
C

HTTP Primer

This appendix introduces the Hyper Text Transfer Protocol (HTTP) [12]. HTTP is the fun-
damental interaction protocol powering the World Wide Web (WWW). As simple as it is
elegant, HTTP is a flexible request-response protocol that provides machine- and location-
independent access to remote resources. HTTP appears in modern speech processing systems
in several places. Within the MRCP protocol, HTTP provides a mechanism for retrieving data
such as speech grammars, audio files and speaker voiceprints, and pushing data such as audio
recordings to remote Web servers. HTTP is also fundamental in enabling the VoiceXML
architectural model by allowing a clean separation of the application logic from the imple-
mentation platform. Last but not least, the structure of the HTTP protocol has significantly
influenced the design of both the MRCP protocol and the Session Initiation Protocol (SIP) -
a protocol that is in turn used by the MRCP framework for session management. An under-
standing of HTTP is therefore not only valuable in itself but also helpful for newcomers
seeking to understand the MRCP and SIP protocols.

C.1 Background

HTTP 0.9 dates back to 1991 when it was created by Tim Berners-Lee (accredited with
inventing the Web). The original protocol was very basic and involved setting up a TCP
connection to the server and issuing a single verb calledGET(all encoded in ASCII text)
followed by the name of the resource. The response was a HTML document. HTTP has since
then evolved significantly to include header fields to parameterise the request, content inde-
pendence (no restriction to HTML), additional verbs that allow data to also be pushed, and
caching and connection persistency to improve performance. The current version of HTTP is
1.1 and is documented in RFC 2616 [12].

Speech Processing for IP NetworksDave Burke
c© 2007 John Wiley & Sons, Ltd

374 HTTP PRIMER

C.2 Basic Concepts

HTTP is a text-based, request-response protocol running over TCP/IP1 and employing an
exceptionally simple message exchange pattern. All messages are initiated from the client
(called a user agent) to the Web server. The Web server acts upon this request and issues a sin-
gle response. Common examples of user agents include desktop Web browsers, VoiceXML
interpreters, and MRCP media resources (which must fetch objects such as audio files, gram-
mar files, voiceprints, etc.). Web servers can vary from the very basic, which serve static files
from the local disk over HTTP to the more advanced, which include the ability to execute
server-side scripts or programs to dynamically generate HTTP responses. Often this latter
capability is separated out into a separate entity called an application server. The application
server2 provides a managed container for server-side programs (e.g. Java servlets). A com-
mon deployment architecture uses a dedicated, optimised Web server for static content and
an application server for dynamic content (the Web server is able to forward requests to the
application server as required enabling a single point of entry to the server-side infrastruc-
ture).

There are a total of eight methods in HTTP but here we only concentrate on the two most
commonly applied:GETandPOST. Both methods are used to retrieve a resource with the
latter enabling data to be efficiently pushed to the server as part of the request.

C.2.1 GETmethod

The HTTP request message consists of a request line, several header fields, and a message
body in the case ofPOST. The request line and the header fields are terminated with a car-
riage return line feed (CRLF). The header fields (or headers for short) employ the format of
header-name: header-value CRLF . An additionalCRLFdelimits the header por-
tion of the message from its optional body. An example of aGETrequest is illustrated below:

GET /index.html HTTP/1.1
Host: www.example.com
User-Agent: Simple-Browser/1.0
Accept: text/html

The request line starts with the method name, the Request-URI and the HTTP version num-
ber. Since the Request-URI is a relative URI, it is combined with theHost header field
value to identify the exact resource (in this case http://www.example.com/index.html). If
the Request-URI is an absolute URI, theHost header field is ignored. TheUser-Agent
header field identifies the name of the agent acting on behalf of the user. TheAccept header
field indicates the MIME types accepted by the user agent - in this case the user agent indi-
cates that it accepts HTML document formats.

The response to the request follows a similar format consisting of status line, followed by
header fields and an optional message body:

1The default port for HTTP is 80.
2We often use the term Web server loosely to mean also the application server.

HTTP PRIMER 375

HTTP/1.1 200 OK
Server: Basic-Server/1.0
Date: Fri, 04 Aug 2006 10:46:24 GMT
Last-Modified: Mon, 25 May 2005 04:32:10 GMT
Set-Cookie2: jsessionid=12345;Version="1.0";Path="/"
Content-Type: text/html
Content-Length: 69

<html>
<body>

<p>Hello World!</p>
</body>

</html>

The status line consists of the protocol version, the status code (200), and a status reason
(OK). The first digit of the status code indicates the family: 1xx messages are informational,
2xx messages indicate success, 3xx message indicate redirection, 4xx messages indicate
client failure, and 5xx messages indicate server failure. Table C.1 summarises common sta-
tus codes and their meanings. TheServer header field is analogous to theUser-Agent
header field in that it identifies the name of the Web server. TheDate header field indicates
the time at which the response message was originated, and theLast-Modified header
field indicates the time at which the Web server believes the content was last modified. The
Set-Cookie2 header field is discussed in Section C.4. The requested resource is contained
in the message body and is identified by theContent-Type header field. The length of the
message body is indicated by theContent-Length (in bytes).

Web applications often need to provide a block of data such as the result of a form to
the Web server. It is possible to supply a limited amount of data with theGETmethod by
employing a query string. The query string is separated from the rest of the URI by a ’?’
character. By convention, data is encoded using a format of name=value and multiple name-
value pairs are separated by ampersands, e.g.:

http://example.com/servlet?name1=value1&name2=my%20value2

Within the query string, certain characters are reserved and must be escaped if they are to be
part of the name or value. In the above example,param2 evaluates tomy value2 and the
space is escaped as\%20 . Characters are escaped using a character triplet consisting of a %
followed by two hexadecimal values which encode the ASCII character. The URI syntax is
described in RFC 2396 [22].

C.2.2 POSTmethod

While theGETmethod can be used to submit data to a Web server, it is not ideal for this
purpose. For one, the user agent, Web server, or intermediate proxy cache may limit the total
length of the URI. For another, it is not appropriate to place sensitive information in the URI

376 HTTP PRIMER

Table C.1 Common HTTP response status codes.

Status code Reason phrase Meaning

100 Trying The initial part of the request has been received and
the client should continue to send the remainder of
the request.

200 OK Action received, understood, and accepted (the
requested resource is in the response).

302 Found The requested resource resides temporarily under a
different URI. The URI for the resource is placed in
theLocation header field in the response.

304 Not Modified The resource has not modified since the last request
(implying a cached version can be used).

401 Not Authorized The request requires authentication.

404 Not Found The identified resource was not found.

500 Internal Server The server encountered an unexpected error
Error condition which prevented it from fulfilling the

request.

as it may appear in the user agent or Web server logs. Finally, encoding of binary data is
inefficient (requiring three bytes for each byte of data if we attempt to use the %xx escaping
method described above).

ThePOSTmethod is designed specifically for sending data to the Web server. The data
in question is supplied in the message body of the request. TheContent-Type header
field identifies the type of request data and theContent-Length header field identifies
the length of the data. Placing the data in the message body allows arbitrary large content to
be supplied, more efficient encoding of the data to be used (see below), and allows the data to
be conveniently encrypted (e.g. if the HTTP protocol runs over a secure transport layer then
the data is encrypted for free).

The two most commonContent-Type encodings used in conjunction with thePOST
method are the application/x-www-form-urlencoded and
multipart/form-data types. Theapplication/x-www-form-urlencoded
encoding is used for submitting textual information such as that obtained from a form. The
encoding format is the same as described for the query string in the previous section. An
example of aPOSTrequest using such an encoding is given below:

POST /submitform.cgi HTTP/1.1
Host: www.example.com
User-Agent: Simple-Browser/1.0
Accept: text/html

HTTP PRIMER 377

Content-Type: application/x-www-form-urlencoded
Content-Length: 30

name1=value1&name2=my%20value2

Usually the target of aPOSTrequest will be a script or server-side program designed to
accept the data and operate on it (e.g. decode it and insert into a database). The response to a
POSTrequest is the same as for aGETrequest, e.g.:

HTTP/1.1 200 OK
Server: Basic-Server/1.0
Content-Type: text/html
Content-Length: 87

<html>
<body>

<p>Thank you for submitting data!</p>
</body>

</html>

The multipart/form-data encoding is ideal for sending binary data to a Web
server and is specified in RFC 2388 [78]. This encoding is commonly used in the WWW
for uploading a file from a form and is used in VoiceXML to submit recorded media to a
Web server, for example. The multipart encoding allows the message body to comprise of
several parts delimited by an arbitrary boundary token (specified by the boundary attribute
in theContent-Type value). The example below shows a binary file called test.bin being
POSTed to the Web server. The four bytes of the binary file (shown here as the hexadecimal
values for each byte) are encoded with aContent-Type of
application/octet-stream (a more accurateContent-Type value is allowed here,
for example, an audio file might be identified asaudio/x-wav). For more information on
multipart encoding, see Section 7.1.4.1.

POST /submitform.cgi HTTP/1.1
Host: www.example.com
User-Agent: Simple-Browser/1.0
Accept: text/html
Content-Type: multipart/form-data;boundary=1a2b3c
Content-Length: 141

--1a2b3c
Content-Disposition: form-data;name="myform";filename="test.bin"
Content-Type: application/octet-stream

378 HTTP PRIMER

0a 2b e2 f3
--1a2b3c--

C.3 Caching

HTTP provides a set of rules to allow responses to be cached. Caching can lead to signifi-
cant increases in performance, reduced load on Web servers (and corresponding application
servers and databases), and allows network administrators to conserve bandwidth require-
ments and therefore save on IP connectivity costs. User agents usually implement a local
cache either in memory, on disk, or both. Intermediate caches deployed in the network (com-
monly called proxy caches) provide network level caching. If one user agent has previously
requested a document and a new user agent requests the same document, the response may
be obtained from the proxy cache rather than contacting the Web server directly.

The specific purpose of HTTP caching is twofold:

1. to avoid making requests to the Web server when possible in most cases, and

2. to avoid the need to send full responses to requests in many cases.

The two key concepts behind the caching rules of HTTP areexpirationandvalidation. A
cached copy of a document that is not expired may be executed without requiring a costly
fetch to the server. An expired document that is subsequently re-validated against the server
may not require a re-transmit of the document to the platform. Specifying the expiration
times is the responsibility of the application developer. HTTP caching is controlled primarily
by setting HTTP header parameters in the Web server for a particular resource. On the Web
server, the HTTP headers ofCache-Control or Expires can be used to specify how
long the resource is to be considered fresh. For example, if the following is inserted in the
HTTP response from a Web server:

Cache-Control: max-age=86400

then the resource is considered fresh for 86400 seconds or 24 hours. An alternative approach
is to set theExpires header for a time 24 hours in the future, for example:

Expires: Fri, 09 Aug 2006 10:01:31 GMT

When a resource is still fresh, the user agent context may serve that resource directly from its
cache. When a resource in the cache is stale and needs to revalidated with the server, the user
agent will send a new HTTP request to the Web server. Included in the request may be a HTTP
header calledIf-Modified-Since which includes theLast-Modified date that was
originally returned in the HTTP response for that resource. TheIf-Modified-Since
allows the Web server to determine if the resource has been updated since the last request.
If it has, the successful HTTP response will specify a status code of200 OK and return the
new resource in its body. If the resource has not changed, the HTTP response will specify a
302 Not Modified status code and omit the message body, thus saving on bandwidth.

HTTP PRIMER 379

Newer implementations may use the header combinations ofETag / If-None-Match
instead of theLast-Modified / If-Modified-Since pair. TheETag is an entity
tag that provides a unique identifier for the content (e.g. a hash) and is returned in the orig-
inal HTTP response containing the resource. TheIf-None-Match header specifies the
ETag of the content. This allows the Web server to determine if the user agent has the latest
content for the requested URI (new content will have a differentETag) and hence respond
appropriately.

Thus far we have discussed caching header fields contained in the HTTP response only.
It is also possible for the client to insert caching header fields in the request to indicate to
upstream intermediate caches conditions on the response the user agent wishes to impose.
The Cache-Control: max-age header field may be placed in the HTTP request to
enable the user agent to request a response whose age is no greater than the specified number
of seconds. For example, pressing the “Refresh” button on a standard desktop Web browser
will trigger a HTTP request that specifies:

Cache-Control: max-age=0

and prevents upstream intermediate caches returning old (cached) versions of the content.
TheCache-Control: max-stale header field may be used for essentially the opposite
effect. This header field can be specified by the user agent in requests to indicate to upstream
intermediate caches that it is willing to accept content that has exceeded its expiration time
up to a given number of seconds, e.g.:

Cache-Control: max-stale=180

C.4 Cookies

The HTTP protocol itself is inherently stateless . HTTP servers respond to each client request
without relating that request to previous requests. Cookies are used within HTTP to enable
stateful sessions. There are two mechanisms for cookie handling - the older and most widely
implemented version is documented in RFC 2109 [51] and defines theSet-Cookie and
Cookie HTTP header fields. The later version is documented in RFC 2965 [52] and defines
theSet-Cookie2 HTTP header field. The later specification contains several minor improve-
ments on the original and uses a different header field name for backward compatibility.

At its simplest, a cookie is an attribute-value pair set by the HTTP server, usually with
some associated reserved attributes that provide metadata, e.g. to specify the domain for
which a cookie is valid. The HTTP server sets a cookie for the client to store by using the
Set-Cookie (or Set-Cookie2) response header and the HTTP client returns the cookie
in subsequent requests using theCookie header. The example in Section C.2.1 illustrates
a cookie with namesessionid and value12345 . TheVersion attribute identifies the
cookie specification version and thePath attribute specifies the subset of URIs to which this
cookie applies. Subsequent requests will echo the cookie back to the server via theCookie
header field, thus allowing the HTTP server to correlate a request with a previous request and
thereby define a stateful session, e.g.:

380 HTTP PRIMER

GET /other.html HTTP/1.1
Host: www.example.com
User-Agent: Simple-Browser/1.0
Accept: text/html
Cookie: $Version="1.0";jsessionid=12345;Path="/"

Application servers typically use cookies to set a unique session ID. The session ID is usually
used in the application server to provide a key to access temporary server-side storage that
persists for the length of the session.

The lifetime of a cookie can be set by adding aMax-Age attribute to theSet-Cookie
or Set-Cookie2 header field value. A user agent may choose to store the cookie for a
shorter period of time. For example, an MRCP media resource starts a new empty cookie
store with each new session.

C.4.1 Security

HTTP messages can be sent securely by issuing them over a Secure Socket Layer (SSL)
or Transport Layer Security (TLS) transport. Anhttps:// URI scheme indicates that a
resource is available via secure HTTP3. Both SSL and TLS provide authentication and pri-
vacy by employing cryptographic techniques running beneath HTTP and above the TCP
layer.

3The default port for secure HTTP is 443.

