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ABSTRACT 
 

 

For some people with severe physical disabilities, brain electrical activity may 

represent the only feasible channel for communicating with others and for 

environmental control. A Direct Brain Interface (DBI) operates by harnessing signals 

arising from processes within the brain, without depending on the brain’s normal 

output pathways of peripheral nerves or muscles. The Electroencephalogram (EEG) is 

one such signal and this thesis seeks to expand our knowledge of the EEG signal using 

a substratum of dynamical systems as the primary technical tool. Indeed, 

characterising the dynamical properties of the EEG has both practical and theoretical 

implications. Knowledge of the underlying dynamics can assist in the identification of 

signal processing algorithms for DBI and diagnostic purposes. Secondly, it can put 

constraints on mathematical properties used to model brain dynamics. While 

characterisation of the nonlinearity in the EEG as arising from low-dimensional chaos 

has now all but been discounted in the literature, little has been offered as an 

alternative. A large focus of this thesis is thus the proposition of such a 

characterisation, with the aid of an empirical model that combines both deterministic 

and stochastic behaviour, under the umbrella of dynamical systems theory. 

 

We commence our technical exposition by introducing nonlinear dynamics in the 

context of Lyapunov theory. We propose a geometric method for synthesising 

prescribed limit cycle oscillators and subsequently prove asymptotic stability of the 

limit cycles. The prescribed oscillators are extended by employing Itô calculus to 

produce dynamical systems exhibiting stochastic limit cycles. A stochastic limit cycle 

is defined as an invariant set by applying stochastic stability theory. Both purely 

mathematical- and biophysical-based models of the EEG are created based on 

stochastic oscillators. A study of the phase space embedding of the actual EEG is 

undertaken and invariant measures compared and contrasted with those obtained from 

model data. Next, more detailed systems are considered, employing coupled 

oscillators to study the interactions of neurons and neural populations as a basis for 

Evoked Potentials (EP) generation – an important feature of the EEG with application 

to DBIs. We conclude the thesis with practical applications by presenting novel 

human-computer interfaces, established with regard to the preceding chapters. 
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CHAPTER I 

BACKGROUND 

 

1.1 Introduction 
The Electroencephalogram, or EEG as it is commonly known, refers to the tiny 

electrical potentials that may be recorded from the surface of the scalp. The EEG is the 

result of the dynamic behaviour of neural populations in the brain operating in a 

cooperative and synchronous fashion (SPECKMANN and ELGER, 1999). For some 

people with very severe physical disabilities (such as C3 lesions), the minute potentials 

of the EEG may represent the only feasible channel for communicating with others 

and for environmental control1. This application forms the primary motivation of this 

thesis, that is, to facilitate communication and control by harnessing the EEG signal in 

a Direct-Brain Interface (DBI). The human brain consists of approximately 1010 

neurons realised in many identified and as yet unidentified structures and hence it is 

not surprising that the current understanding of the resulting EEG is still in its infancy 

(STERIADE, 1999). The central goal of this work is to explore the EEG and related 

signals using a substrate of dynamical system theory as the primary technical tool. 

Creating models of the EEG encourages one to form hypotheses for the generation of 

the signal, affords one the ability to perform experiments and test hypotheses 

otherwise impossible to undertake in an intact brain, and may predict new properties 

of the system suggesting further experimental study. Moreover, an understanding of 

the underlying dynamics can help motivate the choice of tools in signal processing 

applications, for example in the creation of a Direct-Brain Interface. A particularly 

salient point here is choosing a tool on the basis of an interpretation of the EEG as a 

manifestation of a chaotic attractor or as some equilibrium under random perturbation.  

 

The EEG has found many applications in both research and clinical settings since its 

discovery by Hans Berger in 1929 (NIEDERMEYER and LOPES DA SILVA, 1999). Much 

of the benefit of the EEG signal is derived from its non-invasiveness and its excellent 

time  resolution,   in  particular   when   compared  to  alternative   techniques  such  as 

                                                           
1 Obviously many sensitive and contentious issues arise with severe physical disabilities such as C3 lesions (FIRSCHING, 
1998) but there appears to often be a role for alternative communication devices 
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Functional Magnetic Resonance Imaging or Positron Emission Tomography. Good 

time resolution is an important requirement for creating DBIs and hence helps explain 

the popularity of the EEG for this purpose. Table 1.1 summarises some common 

applications of the EEG partitioned into both clinical and research domains. 
 

TABLE 1.1: APPLICATIONS OF THE EEG 
Clinical Domain Research Domain 
Sleep analysis Direct Brain Interface 
Epilepsy detection Behavioural studies 
Spinal cord monitoring Epilepsy seizure prediction 
Cerebral monitoring Brain function studies 
Anaesthesia depth measurement  
Biofeedback  

 

Modelling the EEG is a difficult task. Much of what is known about neurons has been 

learned from isolated nerve cells and most of our knowledge of the cortex has come 

from isolated slices maintained outside the brain. However, these slices do no oscillate 

and do not process information. The choice of scale in the modelling task is also 

paramount, and might vary from the single neuron level, to the neural population, to 

communities of neural populations. Freeman uses the phrases microscopic, 

mesoscopic, and macroscopic respectively to represent these scales (FREEMAN, 

2000a). A wide variety of modelling techniques exist, all ultimately reducible to the 

common language used in this thesis: dynamical systems. We review some of the 

more popular models from the literature in Section 1.3. Such is the state of knowledge 

regarding the EEG that even the choice of interpretation of the resultant signal as the 

result of chaotic effects or stochastic effects is uncertain and it is this aspect of 

modelling the EEG that holds our focus in later chapters. 

1.2 Neurophysiological Basis of Brain Electrical Activity 

This section outlines some of the basic neurophysiological principles underlying brain 

electrical activity and the EEG. Here space restrictions necessitate a rather cursory 

overview, in particular nervous system and cortical structure details have been 

omitted. However, it should be stressed that only through a thorough understanding of 

the relevant neurophysiological details are engineers, mathematicians, and physicists 

truly able to contribute to the problems of uncovering the workings of the nervous 

system. There are countless books on physiology and neurophysiology – the author 
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has found GUYTON (1991) indispensable throughout the work for this thesis. For 

general information on electroencephalography, including its neurophysiological 

principles, the book by NIEDERMEYER and LOPES DA SILVA (1999) is highly 

recommended.  

 

1.2.2 The Neuron  

The neuron is the elemental unit from which the nervous system is composed. The 

central nervous system (i.e. brain and spinal cord) contains an enormous 1011 neurons. 

There are three main components to a neuron: the cell body or soma, the axon, and the 

dendrites. The dendrites form repeatedly branching structures corresponding to the 

receptive portion of the neuron, which continue to grow during the lifetime of the 

brain. The input received at the dendrites (from other neurons) is converted to an 

output by the single axon, which emerges from the cell body.  The axon carries the 

neural output over long distances and may have branched offshoots known as 

collaterals, which spatially distribute the neuron’s output (sometimes with recurrent 

collaterals that transmit information to neurons in its immediate vicinity). Two types 

of structures are seen. In some cases, the axon only has a small bush of terminals thus 

providing a topographic mapping from a transmitting population of neurons to a target 

population. In other cases, the axon branches and diverges repeatedly onto the target 

and the target therefore performs spatial integration.  

 

Synapses connect neurons to each other (see Section 1.2.2.2). Located primarily on the 

dendrites (but also the soma), the synapses provide the electromotive force for the 

current whose preferred path is along the dendritic shaft toward the cell body. The 

direction of the current depends on whether the synapse is excitatory or inhibitory but 

by Kirchhoff’s current law, the current flowing across the cell membrane is in the 

opposite direction to the direction at the synapse – see Figure 1.1. In particular, the 

currents sum at the initial segment of the axon known as the trigger zone. A 

sufficiently excited neuron may respond by “firing” i.e. producing an electrical pulse 

called an action potential that propagates down its axon where it impinges upon other 

neurons. The action potential is a simple and elegant mechanism for communication. 

The signal is a binary response – there is no graded output or negative response and 

the direction is always from the soma to the axon extremities. 
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The transmission is an active mechanism with the energy being provided locally by 

the axon’s excitable membrane. This is in contrast to the passive properties of the 

dendrite, which obeys linear superposition and may be conveniently modelled as a 

linear ODE. In summary, neurons convert the sum of their current inputs into a pulse 

train where the pulse frequency is proportional to the current input. 

1.2.2.1 Membrane Potential 

The cell membrane provides a boundary separating the internal workings of the cell 

from its external environment. The membrane, consisting of phospholipid molecules, 

is selectively permeable thus permitting the passage of some materials while 

restricting others. The membrane wall contains water filled pores and protein-lined 

pores called channels which allow the passage of specific molecules. In particular, the 

cell membrane acts as a barrier to the flow of water. Both the intracellular and 

extracellular environments include an aqueous solution of dissolved NaCl and KCl 

salts, which dissociate into Na+, K+, and CL- ions. Molecules may be transported 

across the cell membrane by passive or active processes. An active process is defined 

as one that requires the expenditure of energy, while a passive process results solely 

from the inherent, random movement of molecules. Some small molecules can pass 

through the membrane by diffusion, while large molecules require carrier-mediated 

Figure 1.1: Loop currents flow in the extracellular (and intracellular) space driven by the EMF produced 
from thousands of synapses. The current flowing through the extracellular space sums with currents 

produced from neighbouring neurons resulting in the local mean field potential recorded by electrodes as 
the EEG. Reproduced from FREEMAN (1992) 
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diffusion where the molecule is bound to a carrier molecule that moves readily through 

the membrane. Concentration differences are maintained by active mechanisms that 

use energy to pump ions against their concentration gradients. One of the most 

important examples is the Na+-K+ pump, which uses the energy stored in ATP 

molecules to pump Na+ out of the cell and K+ into the cell. The Na+-K+ pump moves 3 

sodium ions out of the cell for every 2 potassium ions pumped in, resulting in a high 

concentration of sodium outside the cell and a high concentration of potassium inside 

the cell. Maintaining the intracellular ionic concentrations at their correct levels is 

required by the cell to control its volume, as the membrane is unable to withstand any 

hydrostatic pressure that would occur if the pumping machinery was disabled. 

 

Measuring the intracellular potential with respect to the extracellular region displays a 

negative potential. To understand the reasons for this, consider a membrane only 

permeable to potassium. Since there is a greater intracellular concentration of 

potassium ions, the result is a net outward flow of ions. This outflow of positive ions 

will cause the electrical charge inside the cell to drop. Eventually the negative 

potential will become strong enough to prevent the positively charged potassium ions 

from leaving the cell. The equilibrium condition of the potential gradient offsetting the 

concentration gradient results in the Nernst potential (valid for a single ion species) 

[ ]
[ ]

ln e
s

i

SRTV
zF S

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

where [ ]eS is the extracellular concentration, [ ]iS  is the intracellular concentration, R is 

the universal gas constant, T is the absolute temperature, z is the charge on the ion S, 

and F is Faraday’s constant. The Nernst potential in large mammalian nerve fibre for 

potassium is -94 mV. Now consider a membrane permeable only to sodium ions. The 

greater extracellular concentration of sodium will result in an inward flow of ions 

yielding a net increase in potential inside the cell. The Nernst potential for sodium ions 

in large mammalian nerve fibre is +61 mV. Since the nerve membrane is 100 times 

more permeable to potassium than sodium, we might expect the actual resting 

potential to be quite negative. This is the case, with the combined effects yielding a 

membrane potential of -86 mV. However, the Na+-Cl+ pump, which causes a net 

removal of positive charge from the interior of the cell, further decreases the resting 

potential to yield a value of -90 mV.  
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1.2.2.2 Synapses 

Transmission of information between neurons occurs via a special junction called the 

synapse. A typical neuron has thousands of synapses located on its dendrites and 

soma. A chemical synapse may be classified as excitatory, inhibitory, or modulatory. 

An excitatory synapse causes current to flow into the dendrite at the synapse, along the 

dendritic cable away from the synapse, outwardly across the membrane, and back to 

the synapse in the space outside the membrane. An inhibitory synapse, conversely, 

causes current to flow outwardly at the synapse and inwardly elsewhere. The minimal 

input to a synapse is a single action potential impulse lasting about one millisecond. 

The corresponding current response seen in the dendrite (assuming an excitatory 

synapse) rises monotonically to a maximum in about 1 to 3 milliseconds and decays 

exponentially with a decay time of 5 to 10 milliseconds. The current flow causes an 

increase of potential, in particular at the trigger zone of the soma and is called an 

excitatory postsynaptic potential (EPSP); an inhibitory synapse has exactly the 

opposite effect resulting in an inhibitory postsynaptic potential (IPSP). The third kind 

of synapse, called modulatory, operates indirectly to modify the strength of 

neighbouring excitatory and inhibitory synapses, and is the subject of much 

contemporary neurophysiology. 

 

The actual mechanism of a chemical synapse involves, as the name implies, chemicals 

known as neurotransmitters. An action potential arriving at the presynaptic zone will 

initiate the release of tiny packets of neurotransmitter chemicals called vesicles, which 

diffuse rapidly across the gap between the nerve axon and postsynaptic cell called the 

synaptic cleft. The neurotransmitters bind to receptors in the postsynaptic cell and 

initiates changes in its membrane potential. The neurotransmitter substance is 

subsequently removed from the synaptic cleft by diffusion and hydrolysis. The type of 

postsynaptic potential is determined in part by the species of neurotransmitter at the 

synapse. There are over 40 different types of synaptic transmitters - some of the more 

common ones include acetylcholine (ACh), gamma-aminobutyric acid (GABA), 

norepinephrine, dopamine, and serotonin. 

1.2.2.3 Hodgkin-Huxley Model 

Experimental data shows that when we place a pair of electrodes, one inside a neuron 

and the other outside, and pass a weak current pulse across the membrane, we get an 
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immediate change in transmembrane potential followed by an exponential decay back 

to the baseline. This may be modelled as a simple RC circuit as illustrated in Figure 

1.2.  

 

 

 

 

 

 

 

 

The corresponding equation is 

 

 

where i eV V V= − . For a small applied voltage V, we may assume an ohmic resistance 

for the membrane and write the transmembrane current as 

( )S SI g V V= −  

where VS is the Nernst potential and g is the membrane conductance. In reality, the 

membrane resistance is anything but ohmic over a large range of membrane voltage. 

Alan Hodgkin and Andrew Huxley developed the first quantitative model for the 

propagation of an electrical signal along a squid giant axon (HODGKIN and HUXLEY, 

1952), which won them the Nobel Prize in physiology and medicine in 1963. Their 

model has since been extended and found applicability in modelling a wide range of 

excitable cells. The Hodgkin-Huxley model is arguably the most important model in 

the study of brain electrical activity and we briefly review it here.  

 

In the squid giant axon, as in many neural cells, the principal ionic currents are the 

sodium current and potassium current. When the sodium and potassium channels are 

open, the I-V curves are approximately linear and we may write (1.1) as 

 

 

where other small ionic channels are lumped into a leakage current written with the 

subscript L, and Iapp is an externally applied current. The Hodgkin-Huxley quantitative 

Figure 1.2: Electrical circuit model of cell membrane 

( , ) 0m ion
dVC I V t
dt

+ = (1.1)

(1.2)( ) ( ) ( )m Na Na k k L L app
dVC g V V g V V g V V I
dt

= − − − − − − +
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model is based on replacing the channel conductances  with variable conductances that 

are a function of both voltage and time and are a result of modelling channel gating. 

The Hodgkin-Huxley model restates (1.2) as 

 

 

where the conductances have been rescaled and new variables introduced. The 

variable m is called the sodium activation as it is initially small and first increases. The 

variable h is called the sodium inactivation because h inactivates or shuts down the 

sodium current. Similarly the variable n is the potassium activation. The raised powers 

of the activation and inactivation functions were chosen by Hodgkin and Huxley to fit 

their data (obtained using impressive ingenuity that contributed to their winning of the 

Nobel Prize). The activation functions satisfy the following ODEs: 

(1 )

(1 )

(1 )

m m

n n

h h

dm m m
dt
dn n n
dt
dh h h
dt

α β

α β

α β

= − −

= − −

= − −

 

The specific functions α and β are functions of voltage V involving exponentials. For 

the sake of brevity we will omit them and refer the interested reader to the excellent 

text of KEENER and SNEYD (1998). Figure 1.3 illustrates an action potential and gating 

variables using the original values of HODGKIN and HUXLEY (1952).  

 

 

 

 

 

 

 

 

 

 

 

 

 

3 4( ) ( ) ( )m Na Na k k L L app
dVC g m h V V g n V V g V V I
dt

= − − − − − − +

Figure 1.3: Action potential and gating variables for the 
Hodgkin-Huxley equations with a constant Iapp = 5 
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1.2.3 Neural Populations 

Each neuron in the human cerebral cortex receives 1,000 to 10,000 synapses and 

transmits to a correspondingly large number of other neurons. Neural populations do 

not exist as simply large numbers of neurons driven by a common input in parallel, 

rather they are characterised by virtue of their feedback connections – see Figure 1.4 

(FREEMAN, 1975). Cooperative feedback occurs when an excitatory pool excites 

another and tends to couple neurons to fire more or less together. Cooperative 

feedback is used by the brain to coordinate the activity of neurons. With competitive 

feedback, one inhibitory population inhibits another and vice versa. Locally excited 

cells can inhibit their neighbours and in turn cause them to cease their inhibitory effect 

on the excited cells. This results in the excited cells becoming even more active and is 

called disinhibition – a mechanism that can provide spatial contrast processing.  

 

 

 

 

 

 

 

 

With negative feedback, there is interaction between an excitatory pool and an 

inhibitory pool. This type of configuration is common in the brain and is the basis for 

oscillation. Oscillatory dynamics and synchronisation of neural activity are 

hypothesised to be of significant functional relevance to information processing in the 

brain (STURM and KÖNIG, 2001; WARD, 1998). The large number of neurons in the 

cortex is arranged in layers. It is now well established that pools of neurons in local 

neighbourhoods tend to share activity leading to the concept of cortical columns as the 

macroscopic entity for behaviourally related function (FREEMAN, 2000a). The column 

is conceived to extend the full thickness of the cortex and thus the basic dynamics of 

the cortex may be represented as a two dimensional layer of interconnected local 

populations with parallel input and output lines entering and leaving each column. 

Columns are interconnected more densely over short distances and more sparsely over 

longer distances. Finally, unlike certain cardiac circuits, the oscillations in the brain 

+ 

+ 

-

-

+

-

Cooperative Competitive Negative

Figure 1.4: Different patterns of connections among neurons.  
Reproduced from FREEMAN (1975)
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are not thought to be driven by pacemaker cells and arise naturally from the interaction 

of excitatory and inhibitory populations of neurons (FREEMAN, 2000a). 

1.2.4 Field Potentials and the EEG 

Extracellular potentials recorded outside of the central nervous system are generally 

known as field potentials. Because of the time course of various membrane potential 

fluctuations, the postsynaptic potentials are known to contribute primarily to the 

generation of the extracellular potentials (SPECKMANN and ELGER, 1999). The primary 

transmembrane currents produced at the synapses generate secondary ionic currents 

along the cell membranes in both the intracellular and extracellular regions as 

illustrated in Figure 1.1. The portion of these currents that flow through the 

extracellular space is directly responsible for the field potentials. In addition to the 

neurons, the interspersed glial cells may also play a role in the generation of 

extracellular field potentials (SPECKMANN and ELGER, 1999). These cells are not 

excitable, i.e. do not produce action potentials and the magnitude and polarity of their 

membrane potential approximates the potassium equilibrium potential. An increase in 

extracellular potassium, for example as would occur if neighbouring neurons were 

repetitively firing, will cause a depolarisation of the local glial cells. Thus the glial 

cells are thought to have a magnifying effect on the field potentials. 

 

Location of neurons and synapses relative to recording electrodes has a profound 

effect on polarity and morphology of the resulting waveforms. Figure 1.5 illustrates an 

excitatory synapse positioned at a superficial region of a dendrite and at a deep region 

of the dendrite. 

 

 

 

 

 

 

 

 

 
Figure 1.5: Generation of extracellular field potentials – see text 

for details. Reproduced from SPECKMANN and ELGER (1999) 
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The membrane potential of the dendritic area (shaded) is recorded at both ends by the 

microelectrodes ME1 and ME2. The extracellular field potential is recorded from the 

surface by the E1 electrode as well as in the neighbourhood of ME2 by the E2 electrode. 

Excitatory synapses are marked by triangles. Consider first the superficial synapse. 

The inward current at S generates an EPSP that appears in ME1 and also a smoothed 

and delayed version in ME2 (the transmission may be described by the cable equation 

(KEENER and SNEYD, 1998)). Due to the direction of the current flow, E2 exhibits a 

positive deflection (negativity drawn upwards) and E1 exhibits a negative deflection. 

When the synapse is located at a deep location, the current flow direction is reversed. 

The records produced by ME1 and ME2 are swapped, as are E1 and E2. Finally, if we 

were to consider an inhibitory synapse then exactly the reverse would happen. 

 

We conclude this section by summarising that the EEG potentials recorded from the 

surface of the scalp may be characterised as aperiodic oscillations with amplitude 

histograms that are near Gaussian (amplitudes typically range from 10 – 100 µV), 

autocorrelation functions that rapidly go to zero, log spectra that decrease 

approximately linearly with log frequency (1/f), and with intermittent bursts of 

oscillation having spectral peaks in certain preferred bands: 0.1-3.5 Hz (delta). 4-7.5 

Hz (theta), 8-13 Hz (alpha), 14-30 Hz (beta) and >30 Hz (gamma). For a detailed 

clinical interpretation of the various EEG rhythms see NIEDERMEYER and LOPES DA 

SILVA (1999). 

1.3 EEG Models from the Literature 

Models of the EEG come in a variety of flavours, some of which are based on ordinary 

language (e.g. those used by biologists), others are comprehensive physiological 

constructs, whilst others still might be termed empirical models. It is often the case 

that empirical models (sometimes referred to as phenomenological) are the 

consequence of attempting to fit a simple formula to capture an ordinary language 

model. Further classification (related to scale) may be sought on the basis of whether 

the model is distributed as is usually the case with compartmental modelling 

techniques - for a review see KOCH and SEGEV (1998) - or lumped where for example 

a collection of neurons are modelled as a single process. The goal of this section is to 

briefly review some of the more popular models of EEG dynamics and phenomena 
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from the literature; selected models are subsequently reviewed in more detail for their 

relevance to the present thesis.  

 

Possibly one of the earliest models of the EEG dates back to JASPER (1936) who 

employed a relaxation oscillator to show phenomena common to both relaxation 

oscillators and the EEG, namely that larger amplitudes are accompanied by lower 

frequencies and that oscillations are quenched for a large driving input (which in the 

context of the brain he termed “cortical excitatory state”). WILSON and COWAN (1972) 

proposed a simple and elegant model for the dynamics of tightly coupled excitatory 

and inhibitory neural populations. Phase plane analysis demonstrated the model to be 

capable of reproducing hysteresis, impulse responses, and limit cycle behaviour. The 

model was later extended to a 2-dimensional topology in WILSON and COWAN (1973). 

FREEMAN (1975) proposed a popular physiological based model of the olfactory cortex 

and has developed this over time to include, among others, chaotic phenomena – see 

FREEMAN (2000a) for a review. A lumped model of the alpha rhythm based on the 

interactions of the thalamus and cortex was proposed by LOPES DA SILVA (1974) and 

has been developed to take spatial-temporal characteristics into account by 

ROTTERDAM et al (1982). The Lopes da Silva model has appeared frequently as the 

basis of others’ work, for example in WRIGHT and LILEY (1996) and for modelling 

evoked potentials in JANSEN et al (1993).  A popular mathematical model of the EEG 

is its interpretation as filtered white noise. One of the earliest such proposal was by 

PRAST (1949), suggested as a model for the alpha rhythm. ZETTERBERG (1977) 

modelled the EEG with three filtered, independent noise sources corresponding to 

different rhythms. An equivalent formalisation of a white noise driven filter is the 

autoregressive model (see PARDEY et al (1996) for a review with application to the 

EEG). NUNEZ (1995) suggests an alternative mathematical approach where the alpha 

rhythm is modelled as a standing wave of activity on a spherical model of the cortex; a 

significant correlation between head size and alpha frequency is cited as experimental 

evidence.  Nunez has also combined Rotterdam’s local model with his global model. 

Computational neuroscience methods (KOCH and SEGEV, 1998) have been 

successfully employed in biologically realistic models on both large and small scales. 

WILSON and BOWER (1989) created a large-scale model of the piriform cortex (a part 

of the mammalian olfactory system) by employing compartment modelling to produce 

EEG-like behaviour (see also PROTOPAPAS et al (1998) and PROTOPAPAS and BOWER 
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(1998)). Using similar techniques, LILEY et al (1999) created a large-scale model of 

pyramidal neurons that was capable of producing alpha rhythm activity. GOLOMB 

(1996) et al have proposed small-scale models for the generation of 7-14 Hz spindle 

activity that occurs during the onset of light sleep. Other important EEG phenomena 

such as that resulting from epilepsy have been modelled by TRAUB (1982). More 

recently, interpretations of the EEG as resulting from a nonlinear and/or chaotic 

source, in particular during epilepsy have emerged (BABYLOYANTZ, 1985; 

BABYLOYANTZ and DESTEXHE, 1986).  

1.3.1 Wilson-Cowan Model 

The WILSON and COWAN (1972) model is based on the derivation of a set of coupled 

nonlinear differential equations representing spatially localised populations of 

excitatory and inhibitory neurons. The motivation of modelling at the coarser neural 

population scale is based on the observation that cognitive functions such as pattern 

recognition is in some sense a global process, and that modelling at the single neuron 

scale quickly leads to intractable problems while not providing much additional insight 

since local neuron-to-neuron interactions appear random anyway. Now, assuming the 

neurons are all in close proximity and their interconnections are random but dense 

enough such that there is at least one path between any two neurons, the central idea of 

the model may be stated thus: 

Let, 

E(t) be the proportion of excitatory cells firing per unit time at instant t 

I(t) be the proportion of inhibitory cells firing per unit time at instant t 

The value of these functions at time t τ+ is equal to the proportion of cells that receive 

at least threshold stimulation and the number of cells that are not refractory (i.e. 

sensitive) at time t. 

 

Let C(w) be the synaptic distribution function (number of synapses per cell). If all cells 

have the same threshold θ  and x(t) is the average excitation per synapse, then cells 

with at least ( )x tθ  number of synapses will be expected to fire. Define the population 

response function S, giving the expected proportion of cells in a population receiving 

at least threshold excitation per unit time as a function of average levels of excitation, 

as 

 
( )

( ) ( )
x t

S x C w dw
θ

∞
= ∫ (1.3)
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We require a function for each subpopulation type (i.e. excitatory or inhibitory). Under 

the assumption of homogenous cell types, C(w) can be expected to be a unimodal 

distribution and hence (1.3) assumes a sigmoidal form. The qualitative results obtained 

by Wilson and Cowan are independent of the exact form of (1.3) except that it should 

attain a minimum of 0 and maximum of 1 as x →−∞  and x → +∞  respectively. Next 

the proportion of cells that are sensitive (e.g. for the excitatory population) may be 

written as 

 
 
where r is taken to be the absolute refractory period in ms. In general there will be a 

correlation between the level of excitation of a cell and the probability that it is 

sensitive but for a richly interconnected population of cells and under the assumption 

of spatial and temporal fluctuations in the average level of excitation Wilson and 

Cowan argued that the correlation could be neglected. The resulting integrodifferential 

equations can be written as  

 

 

 

 

where α  models the stimulation decay of a cell to its summed input, and P and Q are 

external afferent inputs to the excitatory and inhibitory populations respectively. To 

make equation (1.5) more tractable mathematically, it is necessary to remove the 

temporal integrals. Wilson and Cowan do this successfully by replacing the integrals 

with their moving time averages, and performing a Taylor expansion around 0τ =  to 

yield 

 

 

 

The state E = 0, I = 0 corresponds to low-level background activity (thus negative 

values can be admitted). In the absence of input, P = 0 and Q = 0 is required to be a 

stable equilibrium and can be achieved if (0) 0S = . This is satisfied for any sigmoid by 

subtracting (0)S from the original function but the result of this must be accounted for, 

namely that the maximum of the response functions are less than unity, and hence the 

1 ( )
t

t r
E dτ τ

−
− ∫ (1.4)

1 2

3 4

( ) 1 ( ) ( )[ ( ) ( ) ( )]

( ) 1 ( ) ( )[ ( ) ( ) ( )]

t t
e
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t t
i

t r

E t E d S t c E c I P d

I t I d S t c E c I Q d

τ τ τ α τ τ τ τ τ
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− −∞

− −∞

⎡ ⎤ ⎛ ⎞+ = − − − +⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
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dt
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τ

τ

= − + − − +

= − + − − + (1.6)
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introduction of k in (1.6). The Wilson and Cowan model exhibits a number of 

interesting phenomena: hysteresis loops constituting multiple stable equilibria driven 

by external inputs (P or Q), damped sinusoidal response to impulses, and limit cycle 

behaviour for steady state input P with frequency proportional to the input. Functional 

significance may be associated to these phenomena: short-term memory, evoked 

responses, and EEG activity respectively. Figure 1.6 illustrates multiple equilibria with 

hysteresis. 

 

 

 

 

 

 

 

 

 

 

For P = 0, the nullclines intersect to form three equilibrium points: two stable and one 

unstable (Figure 1.6, left). As P is increased, the 0dE dt = nullcline moves to the right 

and for approximately P = 0.32, a stable and an unstable equilibrium coalesce and 

disappear in a saddle-node bifurcation (GUCKENHEIMER and HOLMES, 1983). Figure 

1.6 right illustrates the hysteresis effect of the steady state values of E as P is varied. 

Figure 1.7 illustrates limit cycle behaviour for a certain set of parameters. 

 

 

 

 

 

 

 

 

 

 Figure 1.7: Limit cycle produced by (1.6). Parameters: c1 = 16, c2 = 12, c3 = 15, 
 c4 = 3, ae = 1.3, ai = 2, θe = 4, θi = 3.7, re = 1, ri = 1, τ = 8, P = 1.25, Q = 0 

Figure 1.6: Multiple equilibria and hysteresis produced by (1.6). Parameters: c1 = 12, c2 = 4, 
c3 = 13, c4 = 11, ae = 1.2, ai = 1, θe = 2.8, θi =4, re = 1, ri = 1, τ = 8, P = 0, Q = 0 
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Finally, Figure 1.8 illustrates a damped oscillatory response to a brief stimulating 

pulse. 

 

 

 

 

 

 

 

 

 

 

1.3.2 Freeman Model 

Freeman has used linear systems coupled with a nonlinear gain to model dynamic 

neural interactions occurring in the olfactory bulb and olfactory cortex in animals. The 

olfactory cortex is studied on the basis that it is the simplest and best-known part of 

the cerebral cortex (see FREEMAN (2000a) for a recent review). The basic premise of 

Freeman’s work is that pools of neurons in local neighbourhoods share activity, 

leading to the concept of the cortical column as the macroscopic entity for behaviour 

related function and indeed modelling. A distinction between modelling at the single 

neuron and at the neural population scale is made (FREEMAN, 1975). Neurons have two 

main state variables: dendritic potential (wave amplitude) and axon pulse frequency. 

The dendritic wave amplitude is converted to pulse frequency at the neuron trigger 

zones and pulse frequency conversion to current amplitude occurs at the synapses. 

Figure 1.9 illustrates the conversion characteristics for a single neuron.  

 

 

 

 

 

 

 

Figure 1.8: Impulse response produced by (1.6). 
Parameters:  c1 = 15, c2 = 15, c3 = 15, c4 = 3, ae = 1, 
ai = 2, θe =2, θi = 2.5, re = 1, ri = 1, τ = 10, Q = 0 
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Figure 1.9: Pulse-wave and wave-pulse conversion 
characteristics for a single neuron 
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The pulse-wave characteristic is time varying and nonlinear and the wave-pulse 

characteristic curve is also time-varying but linear above a threshold. The dashed line 

corresponds to the maximum pulse rate restricted by the absolute refractory period at 

which cathodal block occurs (FREEMAN, 1975).  

 

For neural populations, Freeman indicates the relevant state variables as the dendritic 

current density over the population and the axonal pulse density over the population – 

see Figure 1.10. The pulse-wave interaction is constrained to a small-signal linear 

region because its domain of input is bounded by the preceding wave-pulse conversion 

in feedback loops; the gain varies with learning. The wave-pulse characteristic is 

sigmoid in shape and displaced to the left indicating that for no input some neurons on 

average are firing; the gain is increased by arousal. 

 

 

 

 

 

 

Freeman characterises neural populations by the type of internal synaptic connection. 

A K0 set is one without internal connections e.g. sensory receptor cells. A KI set refers 

to a population with mutual synaptic connections all having the same sign thus a KIe is 

an excitatory population and a KIi is an inhibitory population. Freeman suggests that 

negative feedback leads to sustained oscillations and denotes a reciprocally connected 

KIe and KIi set as a KII set.  

 

To create a model of the EEG, Freeman uses a second order linear equation for each 

population given by 

 

 

 

 

for some constants a, b and where P is an external input. Neural populations are 

coupled via the product of a constant term (linear gain in Figure 1.10 left) and a 
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Figure 1.10: Pulse-wave and wave-pulse conversion 
characteristics for a neural population 
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sigmoid term (Figure 1.10 right). The sigmoid curve was found experimentally to give 

the best fit with data (FREEMAN, 1979) and is given by  

 

 

 

 

The parameter Qm is used to fit (1.8) to experimental data and is reduced in sleep and 

anaesthesia, decreasing to 0 for very deep anaesthesia, and is increased by waking and 

emotional arousal. For very deep anaesthesia, the system may be considered open loop 

and thus synaptic interactions are suppressed. Under these conditions the impulse 

response subject to an electrical stimulus may be measured experimentally and (1.7) 

may be fitted to the data. To study oscillatory interactions, a KII set may be 

constructed comprising an excitatory and inhibitory population each described by (1.7) 

coupled with a nonlinear function (1.8) scaled by a constant term (pulse-wave gain) 

 

 

 

 

 

In Freeman’s models, m denotes excitatory mitral cells (KIe) of the olfactory cortex 

and g denotes the inhibitory granule cells (KIi). Equation (1.9) is capable of producing 

damped and sustained oscillations. More complex topologies e.g. FREEMAN (1993) are 

capable of exhibiting chaotic time series. Chaotic activity has been proposed by 

FREEMAN (1992) as a mechanism for information processing in the olfactory cortex. 

For a system (e.g. the cortex) to adapt to rapid changes in the environment, it must be 

intrinsically unstable and subject to sudden transitions, i.e. microscopic sensory events 

should be able to trigger macroscopic patterns. A proposed method for pattern 

recognition is suggested based on a global chaotic attractor where a recognised 

sensory input constrains the system to a wing of the attractor. In this way, access to 

and from the attractor wing is rapid and does not require a large expenditure of energy. 

Freeman also indicates a role for chaotic attractors consisting of multiple patterns in 

Hebbian2 training individual synapses in response to repeated stimuli.  

                                                           
2 The Hebbian paradigm refers to a neural network learning strategy: an increase in synapse strength 
occurs as a result of correlated pre- and postsynaptic activity (BOWER and BEEMAN, 1998) 
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1.3.3 Zetterberg Model 

ZETTERBERG (1969) introduced a popular empirical model of the EEG based on the 

concept of flat spectrum noise feeding a filter network. This model may be 

conveniently reformulated into a parametric model such as the Auto Regressive (AR) 

or Auto Regressive Moving Average (ARMA) model (LJUNG, 1987). Empirical 

models of this nature for the EEG possess a number of desirable features 

(ZETTERBERG, 1977): 

1) Achieves a precise description of essential properties with few parameters 

2) Accurate spectral estimation is possible 

3) Changes in spectral properties may be tracked 

4) Transients and nonstationary events may be detected 

5) Classification of the EEG may be performed (see Chapter VI) 

 

Figure 1.11 illustrates Zetterberg’s original proposal, which is the ARMA model.  

 

 

 

 

 

A popular simplification occurs when bi = 0, resulting in the AR model. Many 

algorithms for calculating the coefficients efficiently exist (ZETTERBERG, 1977; 

LJUNG, 1987; PARDEY et al, 1996). Rephrased in the frequency domain, the spectral 

density of the ARMA model may be written (B(z) = 1 for the AR model) as 
2
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and we have used j Tz e ω= where T is the sampling interval.  

Zetterberg went one step further by imposing some structure about the underlying 

stochastic process (ZETTERBERG, 1969; WENNBERG and ZETTERBERG, 1971). It is 

based on the decomposition of the spectral density into three components consisting of 
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Figure 1.11: ARMA model of the EEG where ve are uncorrelated 

with mean 0 and variance 2σ  
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the delta, alpha, and beta rhythms denoted by ( )R fδ , ( )R fα , and ( )R fβ  respectively, 

i.e. 
( ) ( ) ( ) ( )R f R f R f R fδ α β= + +  

This decomposition is illustrated in Figure 1.12. A first order model is used to produce 

the delta component, while the alpha and beta components each require a second order 

model. Each component is defined by its centre frequency f, bandwidthσ , and power 

G defined by 

( )G R f df
∞

−∞
= ∫  

and thus a fifth order spectrum corresponds to eight parameters. The procedure for 

determining the parameters in Figure 1.12 from a decomposition of the ARMA model 

spectrum is called Spectral Parameter Analysis (SPA). The SPA technique has been 

employed in a number of experimental settings e.g. WENNBERG and ZETTERBERG 

(1971) and ISAKSSON and WENNBERG (1975).  

 

 

 

 

 

 

 

 

 

 

 

 

1.4 Chaotic vs. Stochastic Dynamics 

A pertinent concern in both modelling and analysing the EEG is whether the observed 

aperiodic activity is a manifestation of a deterministic, possibly chaotic attractor or 

some equilibrium state under random perturbation. Since neuronal systems involve 

nonlinear mechanisms at the microscopic level, it is natural to hypothesise that the 

unpredictable nature of macroscopic activity observed in the EEG might be ascribed to 
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Figure 1.12: Spectral decomposition of the EEG into delta, 
alpha, and beta components resulting in eight parameters 
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these same underlying nonlinear effects. Characterising the dynamical properties of 

the EEG has both practical and theoretical implications. Knowledge of the underlying 

dynamics can assist in the identification of signal processing algorithms for direct 

brain interfacing and diagnostic purposes. Secondly, it can put constraints on 

mathematical properties used to model brain dynamics. Nonlinear time series analysis 

(see ABARBANEL (1996) or KANTZ and SCHREIBER (1997) for a comprehensive 

introduction) was first applied to EEG data by BABLOYANTZ (1985). Correlation 

dimension and Lyapunov exponents were calculated for the awake state and various 

sleep stages. For sleep stage 2 and stage 4, the author found evidence for nonlinear 

determinism. BABLOYANTZ and DESTEXHE (1986) carried out a dimensional analysis 

of petit mal epileptic EEG and found a low dimension, which in addition to a positive 

Lyapunov exponent, they suggested was indicative of chaos. These early nonlinear 

time series studies of the EEG helped spur a subsequent plethora of related 

publications - see BAŞAR (1990), PRITCHARD and DUKE (1992), and LEHNERTZ et al 

(1999) for publications dedicated to the subject.  

 

Robust evidence for deterministic nonlinearity, however, has not been shown 

conclusively for the normal EEG. A comparison of values for invariant measures such 

as attractor dimension have shown little consistency over values reported by different 

labs and this has been confounded by the fact that many early studies did not specify 

under what conditions the measurements were made (ELBERT et al, 1994). More recent 

studies have imposed robust statistical frameworks to aid investigation. When testing 

for nonlinear structure in the EEG, a popular null hypothesis is that the signal is a 

realisation of a linear Gaussian random process. Unlike deterministic data, which 

contains information pertaining to time direction, linear Gaussian random processes do 

not and may be characterised fully by their power spectrum. It is possible to generate 

surrogate data exhibiting the same spectrum as the data in question but with the 

deterministic information destroyed by taking the Fourier transform, randomising the 

phases, and returning the data to the time domain by an inverse Fourier transform 

(THEILER et al, 1992). Employing these more objective tests, and accounting for 

correlations in over-sampled data yielding spurious low dimension measures, THEILER 

and RAPP (1996) concluded that they could find no evidence for low-dimensional 

chaos. In fact, SCHREIBER (1999) suggests that the problem of whether the observed 

irregularity in the EEG can be ascribed to intrinsic instability, the large number of 
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neurons, or noise, may not be decidable based on time series data alone. The author 

presents a number of spurious (Type I) rejections of the null hypothesis from 

artificially generated data. STAM et al (1999) found the null hypothesis for the eyes-

closed relaxed EEG could only be rejected in 1.25% of cases measured over 60 

subjects using nonlinear time series prediction. Analysis of pathophysiological data, 

however, appears to exhibit stronger deterministic tendencies. While PIJN et al (1991) 

could not differentiate normal EEG data from phase-randomised surrogates for data 

from rats, epileptic data in many cases could.  CASDAGLI et al (1997) found 

statistically significant nonlinearities in invasive EEG recordings from patients with 

temporal lope epilepsy.  Similarly, VAN PUTTEN and STAM (2001) concluded that the 

interictal EEG activity seen in West syndrome could not be described accurately by a 

Gaussian linear stochastic process.  

 

On the basis of the literature over the last 15 years on nonlinear dynamical analysis of 

the EEG, we are probably now at a point where we can say with reasonable confidence 

that the EEG shows little or no evidence of exhibiting chaotic signatures. The signal 

does appear to exhibit weakly nonlinear characteristics under certain conditions 

(nonlinear determinism is a necessary but not sufficient condition for chaos) but is 

unlikely to be due to noise-free low dimensional chaos dynamics (ROMBOUTS et al, 

1995; STAM et al, 1999). FREEMAN (2000b) suggests the name “stochastic chaos” for 

aperiodic brain activity while SCHREIBER (1999), HERNÁNDEZ (1996), and this author 

prefer the interpretation of aperiodicity as stochastic limit cycle behaviour. Chapters II, 

III, and IV of this thesis are concerned with the development and study of a stochastic 

limit cycle model of the EEG, essentially a hybrid of deterministic and stochastic 

mathematical properties. It should be stressed that interpretation of the EEG as a 

stochastic signal does not exclude the use of nonlinear techniques - only their 

interpretation. A particular case in point is LEHNERTZ and ELGER (1998) who interpret 

the correlation dimension as an “operational definition” and show its capability in 

predicting epileptic seizures several minutes prior to the event. We review stochastic 

interpretations of some of the results from nonlinear (deterministic) time series 

analysis in Chapter IV. Finally, although an optimum description of the EEG might 

involve statistical terms, these need not imply that the biophysical processes 

underlying the EEG are random, only that they may have such a high degree of 

complexity that only a statistical description is possible (LOPES DA SILVA et al, 1999). 
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1.5 Summary 

We commence our technical exposition in Chapter II by introducing nonlinear 

dynamics and oscillations in the context of Lyapunov theory. We propose a geometric 

method for synthesising prescribed limit cycle oscillators and subsequently prove 

asymptotic stability of the limit cycles. In Chapter III, the prescribed oscillators are 

extended to the stochastic case by employing Itô calculus to produce stochastic limit 

cycle oscillators. A stochastic limit cycle is defined as an invariant set by applying 

stochastic stability theory. Both purely mathematical- and biophysical-based models of 

the EEG are created based on stochastic oscillators. Chapter IV undertakes a study of 

the phase space embedding of the actual EEG, and invariant measures are compared 

and contrasted to those obtained from model data. In Chapter V, more detailed systems 

are considered, employing coupled oscillators to study the interactions of neurons and 

neural populations as a basis for Evoked Potentials (EP) generation – an important 

feature of the EEG with application to DBIs. Chapter VI investigates some practical 

applications of novel direct brain interfaces. Finally, we conclude the thesis with a 

discussion in Chapter VII.  

 

It is probably fair to say that the work encompassed in a PhD thesis is never complete, 

with new avenues presenting themselves for study at each juncture. This thesis is no 

different, and the final sections of Chapters II – VI inclusive are concerned with areas 

that the author feels warrants further research but for which there was insufficient time 

to study in detail in the present scope of work. 
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CHAPTER II 

DYNAMICAL SYSTEMS AND PRESCRIBED OSCILLATORS 

 

2.1 Introduction 
This part of the thesis provides the technical foundations for later chapters. Nonlinear 

dynamical systems are introduced in the context of Lyapunov theory (MERKIN, 1997; 

LA SALLE and LEFSCHETZ, 1961). We propose a novel method for synthesising 

geometrically prescribed limit cycle oscillators. Asymptotic stability is subsequently 

proved by invoking La Salle’s extension to Lyapunov’s Direct Method (LA SALLE and 

LEFSCHETZ, 1961). Examples are applied to well known planar curves to demonstrate 

the flexibility of the technique. Finally, a method for approximating a certain class of 

periodic time series via limit cycle oscillators is presented.  

 

Nonlinear dynamics is a complex field. Analytic solutions are uncommon and 

complete theories rare; we resort to a combination of geometric, numerical, and 

perturbation techniques. A number of excellent texts exist on the topic of nonlinear 

dynamics and oscillations including LA SALLE and LEFSCHETZ (1961), ANDRONOV et 

al (1966), MERKIN (1997), and GUCKENHEIMER and HOLMES (1983). 

2.2 Basic Dynamical System Theory 

We will regard a dynamical system as 

            

where x = x(t) ∈ Rn is a vector valued function of time and F : U→Rn is a smooth 

function defined on some subset U ⊆ Rn. We say that the vector field F generates a 

flow φt : U→Rn where φ(x,t) is defined for all x in U and t in some interval I = (a,b) ⊆ 

R and φ satisfies 

 

for all x ∈ U and τ ∈ I. Note that we have restricted t to an interval I since it is 

possible for solutions to have a finite escape time e.g. dx/dt = 1 + x2 has solutions x(t) 

= tan(t+c) that tend to infinity on unrestricted time intervals. In this chapter, we are 

( )x F x= (2.1)

(2.2)( ( , )) | ( ( , ))t
d x t F x
dt τφ φ τ= =
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interested in synthesising systems exhibiting a prescribed periodic orbit φ(xo,t) subject 

to some initial condition φ(xo,0) = xo.  

2.2.1 Stability Theory 

Fixed points are defined by the vanishing vector field 
( ) 0eF x =  

Without loss of generality we shall consider the fixed point xe to be at the origin. We 

wish to study the stability of this equilibrium point subject to small perturbations. 

Writing x(t) = (x1,x2,…,xn) and denoting initial conditions at time t0 as x0j we introduce 

the concept of stability in the sense of Lyapunov: If for any positive value ε no matter 

how small, one can find another positive value δ such that at time t = t0, for all initial 

perturbations x0j satisfying 
2
0 jx δ≤∑  

the inequality 
2
jx ε<∑  

holds, then the unperturbed motion is stable; otherwise it is unstable. A geometric 

interpretation (n = 2) is illustrated in Figure 2.1. Given an arbitrarily small sphere of 

radius ε  (called the ε -sphere) if we can find a smaller sphere of radius δ  (the δ -

sphere) such that a point starting within (or on) the δ -sphere never reaches theε -

sphere then the system is stable.  

 

 

 

 

 

 

 

If xj(t)→0 as t→∞ then the equilibrium is called asymptotically stable. If we can 

choose x0j arbitrarily and asymptotic stability holds then we say the system is stable in 

the large or globally asymptotically stable. 

 

Before introducing Lyapunov’s Direct Method, we need to introduce definite 

functions, which are used in the method’s definition and supplied proof. We consider 

.
ε 

δ
x0 

Figure 2.1: Geometric interpretation of stability in the sense of Lyapunov 
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real, single-valued, continuous functions V(x) = V(x1,x2,…,xn). A definite function 

(positive or negative) is a function that maintains one sign and vanishes only at the 

origin. An indefinite function is one that vanishes at point(s) other than the origin.  To 

provide a geometric interpretation of V and its time derivative, we construct the 

surface V(x) = c (c positive) and choose an arbitrary point M on it. We evaluate the 

gradient at M (which lies perpendicular to the surface V(x) = c) as (where ei are unit 

vectors along the axis xi) 

1 2
1 2

grad ... n
n

V V VV e e e
x x x

∂ ∂ ∂
= + + +

∂ ∂ ∂
 

Calculating the time derivative of V  

 

 

we can write 

 

where U is the velocity of the point M (whose components are dxi/dt). From (2.4) we 

can see that if dV/dt < 0, the angle between U and grad V is obtuse, if dV/dt > 0 the 

angle is acute, and if dV/dt = 0 the angle between the two vectors is a right angle. 

Figure 2.2 provides an illustration of this. 

 

 

 

 

 

 

 

 

 

Analysis of stability can often be performed by Lyapunov’s Direct Method, which can 

provide sufficient conditions for the stability of the system. The Direct Method is 

concerned with generalisations of energy functions V with stability being proven for 

systems where V is shown to decrease along solution curves. The real benefit of this 

approach is that it avoids the need to obtain explicit solutions of the system in question 

(which is rarely possible in the nonlinear case). We present Lyapunov’s Direct Method 

in the following two sections. 

gradV U V= ⋅ (2.4)

grad V

V = c 
dV/dt <  0

grad V 

U

φ

M

. 

U

φ

M

. 

V = c 
dV/dt >  0

Figure 2.2: Geometric interpretation of (2.4) 

1 2
1 2

... n
n

V V VV x x x
x x x

∂ ∂ ∂
= + + +

∂ ∂ ∂
(2.3)
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2.2.1.1 Lyapunov’s Theorem of Motion Stability 

Theorem 2.1 If one can find a definite function V for the set of differential equations 

(2.1) such that the time derivative dV/dt is either identically zero or semi-definite with 

opposite sign, then the motion is stable. 

 

Proof 

Construct an arbitrary small sphere of radius ε  containing a smaller sphere of 

radius δ . 

 

 

 

 

 

 

 

We select a Lyapunov contour V = c as illustrated in Figure 2.3 such that we can start 

a point M in motion at M0 on the contour which is within the δ -sphere. To prove the 

theorem we show that the point M0 never reaches the ε -sphere. At the instant we set 

M in motion we note that, from the theorem definition, 0≤dtdV . From (2.2) we see 

that if 0<dtdV  the angle between the velocity vector U and grad V (normal to the V 

= c surface) is obtuse and thus the M must be directed inwards. When 0=dtdV  the 

angle is perpendicular and M moves tangent to the Lyapunov contour. Therefore, M 

can never leave the closed area bounded by V = c and thus never reach the ε -sphere. 

This proves the theorem. 

2.2.1.2 Lyapunov’s Theorem of Asymptotic Stability 

Theorem 2.2 If one can find a definite function V for the set of differential equations 

(2.1) such that the time derivative dV/dt is definite with opposite sign, then the motion 

is asymptotically stable. 

 

Proof 

Following from the proof of Theorem 2.1 we note that if the time derivative of V is 

strictly less than zero, then M must always be directed inwards. Selecting a sequence 

.

ε 

δ

M0

Figure 2.3: Theorem 2.1 – see text for details 

. V = c
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of decreasing contours V = cj, where cj < ck, k < j, we verify that in the limit of cj→0, 

M→0 and the system is thus asymptotically stable. This concludes the proof. 

 

In practice the conditions for asymptotic stability laid out in Theorem 2.2 are quite 

strict, requiring definiteness in both V and dV/dt. These requirements can be relaxed 

with the use of Krasovsky’s theorem, which we state next without proof. 

2.2.1.3 Krasovsky’s Theorem of Asymptotic Stability 

Theorem 2.3 If one can find a definite function V for the set of differential equations 

(2.1) such that the time derivative:  

• dV/dt < 0 outside of K 

• dV/dt = 0 on K 

where K is a manifold not containing whole trajectories of the system for 0 ≤ t < ∞, 

then the motion is asymptotically stable. 

 

Figure 2.4 illustrates an example of Krasovsky’s Theorem. The system is 

asymptotically stable, however dV/dt is only strictly negative outside K.  

 

 

 

 

 

 

 

 

 

While Lyapunov’s Theorem requires dV/dt to be a monotonic decreasing function, 

here we only require that it decrease in a piecewise fashion. A useful generalisation of 

the theorem is stated next. 

2.2.1.4 Barbashin-Krasovsky’s Theorem of Asymptotic Stability in the Large 

Theorem 2.4 If one can find a definite function V for the set of differential equations 

(2.1) where V is radially unbounded, that is 

1 2
1 2,

lim ( , )
x x

V x x
→∞

→ ∞  

V = c1

V = c2

V = c3

K

φ

Figure 2.4: Krasovsky’s Theorem 
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(interpreted as at least one ix → ∞ along any path) such that the time derivative:  

• dV/dt < 0 outside of K 

• dV/dt = 0 on K 

where K is a manifold not containing whole trajectories of the system for 0 ≤ t < ∞, 

then the motion is globally asymptotically stable. 

2.2.2 Stability of Periodic Motion 

Before discussing the stability of periodic motion we will introduce some concepts 

related to asymptotic behaviour of flows. A discussion on asymptotic behaviour and 

stability in the sense of Lyapunov for periodic orbits precedes an extension of 

Lyapunov’s Direct Method, which facilitates analysis of convergence to dynamical 

behaviours more general than equilibrium, i.e. limit cycles. 

2.2.2.1 Asymptotic Behaviour 

Definition 2.1 An invariant set S for a flow tφ is a subset nS ⊂ such that 

( )t x Sφ ∈  for x S∈  for all t ∈ . 

 

In other words, every trajectory that starts in S remains in S for all future time. An 

invariant set is thus a generalisation of the equilibrium point, for example. 

 

Definition 2.2 A point p is an ω-limit point of x if there are points 
1 2
( ), ( ), ...t tx xφ φ  on 

the orbit of x such that px
it

→)(φ as ∞→t . A point q is an α-limit point of x if there 

are points 
1 2
( ), ( ), ...t tx xφ φ  on the orbit of x such that qx

it
→)(φ as −∞→t . The α(x) 

and ω(x) limit sets are naturally defined as the sets of α and ω limit points of x for  

dynamical behaviours more general than equilibrium 

 

A limit set describes where the flow tends to with infinite time. If x(t) is bounded, then 

its ω-limit set is a nonempty, compact, invariant set (LA SALLE and LEFSCHETZ, 1961). 

 

Definition 2.3 A point p is nonwandering for the flow φt if for any neighbourhood U 

of p, there exists arbitrarily large t such that φt(U) ∩ U ≠ ∅. A set of all such points is 

a nonwandering set.  
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For two-dimensional planar flows, all possible nonwandering sets fall into three 

classes (ANDRONOV et al, 1966) 

(i) Fixed points 

(ii) Closed orbits 

(iii) Unions of fixed points and the trajectories joining them 

With reference to the third case, a trajectory joining two different fixed points is called 

a heteroclinic trajectory and one connecting the point to itself is called a homoclinic 

trajectory. A useful result (two dimensional flows only) for determining the existence 

of closed orbits is the Poincaré-Bendixson theorem (stated here without proof) 

 

Theorem 2.5 (Poincaré-Bendixson) For two-dimensional flows, a nonempty compact 

α- or ω- limit set of planar flow, which contains no fixed points, is a closed orbit.  

 

To verify the existence of a stable periodic orbit, one may determine two nested 

contours C1 and C2 such that trajectories cross C1 outwards and C2 inwards. 

2.2.2.2 Stability in the sense of Lyapunov 

In addition to the existence of a limit cycle, we generally require information 

regarding its stability. Analogous to the study of the stability of fixed points, we can 

apply Lyapunov stability theory to the study of period orbits (ANDRONOV et al, 1966). 

We observe a representative point circulating the closed phase path and enclose the 

point in a small sphere of radius ε , which moves with the representative point. If for 

arbitrarily small ε, we can find a smaller sphere of radius δ  such that every 

representative point situated within the δ -sphere at the initial instant never reaches the 

ε-sphere, then the period motion is stable in the sense of Lyapunov.  More specifically, 

consider (2.1) for a planar system exhibiting periodic motion x1 = φ1(t), x2 = φ2(t) with 

period T.  Stability is assured if for every ε > 0, we can find a δ(ε) such that for any 

other motion x1(t), x2(t) satisfying 

 

 

the inequalities 

 

 

δφδφ ≤−≤− )()()()( 02020101 ttxandttx

1 1 2 2( ) ( ) ( ) ( )x t t and x t tφ ε φ ε− < − <
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are satisfied for all t > t0.  

 

We conclude this section by stating with proof, an extension to Lyapunov’s Direct 

Method to allow for negative semi-definite functions V while still facilitating 

conclusions to be drawn regarding asymptotic stability (Theorem VI, pp. 58, LA SALLE 

and LEFSCHETZ, 1961). By doing this, we will be able to consider stability of more 

complex dynamic behaviours, in particular periodic motions. 

 

Theorem 2.6 (Theorem VI, pp. 58, LA SALLE and LEFSCHETZ, 1961) Let V(x) be a 

scalar function with continuous first partial derivatives. Let lΩ  designate the region 

where V(x) < l. Assume that lΩ  is bounded and that within lΩ : 

( ) 0 0,

( ) 0

V x for x

V x

> ≠

≤
 

Let R be the set of all points within lΩ  where ( ) 0V x =  and let M be the largest 

invariant set in R. Then every solution x(t) in lΩ  tends to M as t → +∞ .  

 

Proof 

The conditions on V imply that it is non-increasing for t → +∞  and thus every solution 

x(t) starting in lΩ  must remain in it. Therefore V(t) has a limit l0 as t → +∞  and l0 < l. 

By continuity, one concludes that V(x) = l0 is on the ω-limit set of x. Hence the ω-limit 

set is in lΩ  and 0V = is on the ω-limit set. Consequently, the ω-limit set is in R, and 

since it is an invariant set it is in M. Since x(t) remains in lΩ  it is bounded for 0t ≥ , 

and ( )x t M→  as t → +∞ . If in addition V is radially unbounded and 

( ) 0V x ≤ everywhere, then all solutions globally asymptotically converge to M as 

t → +∞ . This concludes the proof. 

 

2.3 Prescribed Limit Cycle Oscillators 
2.3.1 Method I 

We are now ready to present our main result for this chapter, which is a novel method 

for synthesising two-dimensional oscillators exhibiting a prescribed limit cycle 

contour. Specifically, we seek a system of the form  
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such that it exhibits an asymptotically stable limit cycle oscillation tracing out a 

specified contour in the (x1,x2) phase plane. A natural system to use as a starting point 

is the Hamiltonian system (GUCKENHEIMER and HOLMES, 1983) 

 

 

 

 

where H(x1,x2) is the Hamiltonian or energy function whose critical points are the 

fixed points of (2.6). Since 

 

the level curves H(x1,x2) = constant are solutions of (2.6). A Hamiltonian system is 

conservative (linearising such a system yields only centres or saddles; no sinks or 

sources). Put another way, the periodic motion is not asymptotically stable in the sense 

of Lyapunov (ANDRONOV et al, 1966) and a small perturbation results in periodic 

motion that will not return to the original motion. By introducing additional terms to 

the right hand side of (2.6) we will show that it is possible to produce asymptotically 

stable limit cycle behaviour described by the contour H = 0. The proposed system 

takes the form of: 

 

 

 

 

 

Lemma 2.1 

Consider a closed, smooth contour H(x1,x2) = 0 centred on the origin and let 

2

1 2 1 2( , ) ( , )V x x H x x= . Then 
2 2

1 2
0H H

x x
⎛ ⎞ ⎛ ⎞∂ ∂+ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

is only satisfied at maxima of V. 
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Proof 

Since 
2 2

1 2
0H H

x x
⎛ ⎞ ⎛ ⎞∂ ∂+ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 only occurs when the partial derivatives are identically 

0, it remains to show that 0
i

H
x

∂ =∂ , i = 1, 2 occur at maximum points of V. The 

critical points of V are obtained by letting 

1 1

2 2

2 0

2 0

V HH
x x
V HH
x x

∂ ∂
= =

∂ ∂
∂ ∂

= =
∂ ∂

 

which occurs on the contour H = 0 and when 0
i

H
x

∂ =∂ , i = 1, 2. The function V is a 

nonlinear measure of distance from the contour H = 0 and thus only possesses one 

minimum on the contour itself and no saddle points. Thus, the other critical points 

must be maxima. This concludes the proof. 

 

Theorem 2.7 (Prescribed Limit Cycle Oscillators) Consider the closed contour 

defined by H(x1,x2) = 0 centred on the origin. Assuming the first partial derivatives of 

H exist, then equation (2.7) yields asymptotically stable limit cycle behaviour 

described by the contour H(x1,x2) = 0. 

 

Proof 

Consider a Lyapunov function, which is a nonlinear measure of distance from the limit 

cycle 

 

 

Applying Theorem 2.6, we choose a bounded region lΩ  that surrounds H(x1,x2). The 

time derivative of V is written as 
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and is thus negative semi-definite. The region R for which 0V =  consists of 
2 2

1 2
0H H

x x
⎛ ⎞ ⎛ ⎞∂ ∂+ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 and the limit cycle defined by H(x1,x2) = 0, both of which are 

invariant sets. Thus M, the largest invariant set in R, is simply the union of these sets. 

By Theorem 2.6, every point starting in lΩ  tends to M as t → ∞ .  By Lemma 2.1, since 

2 2

1 2
0H H

x x
⎛ ⎞ ⎛ ⎞∂ ∂+ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 correspond to local maxima of V, a small deviation in any 

direction will drive trajectories away from it, and thus are unstable equilibria. In 

contrast, trajectories on the limit cycle H(x1,x2) = 0 correspond to a local minimum of 

V and are stable. Therefore, all trajectories starting from anywhere (excluding the 

unstable equilibrium points) must converge to the limit cycle and hence it is 

asymptotically stable.  Since V is radially unbounded (it is a nonlinear measure of 

distance) 

 

and if  

1 2( , ) 0V x x ≤  

over the whole state space then the limit cycle is globally asymptotically stable. This 

concludes the proof.   

 

The parameter λ determines the stability of the limit cycle. For λ > 0, the limit cycle is 

stable, for λ < 0 the limit cycle is unstable, and for λ = 0 it is marginally stable (this is 

just a reduction to the Hamiltonian system equivalent). For positive λ, its magnitude 

determines the degree of attraction to the limit cycle, an important factor for models 

comprised of coupled oscillators. In the sequel, we will refer to (2.7) as Method I.  

2.3.1.1 Examples of Prescribed Oscillators 

To illustrate the flexibility of our method, we present examples of oscillators 

exhibiting limit cycle contours of some well known planar curves (REKTORYS, 1969). 

In all cases, we have employed a Runge-Kutta (4,5), variable step-size, explicit solver. 

 

Example 2.1: Ellipse Limit Cycle Oscillator 

Let 

 

1 2

2
1 2,

lim ( , )
x x

H x x
→∞

→ ∞

2 2
1 2

1 2 2 2( , ) 1 0
x x

H x x
a b

= + − =
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be the standard equation of the ellipse. The parameters a and b are the lengths of the 

semi-axes. The special case for the circle is obtained by setting a = b. The 

corresponding differential system is  

 

 

 

 

Figure 2.5 illustrates a phase portrait for the simulated system with a = 2, b = 1, λ = 1. 

We see that the nullclines intersect at (0,0) to form an unstable focus. This singularity 

is bounded by a stable elliptic limit cycle as initially prescribed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.2: Square Limit Cycle Oscillator 

Let 
2

1 2 1 2( , ) 0H x x x x r= + − =  

describe a square contour circumscribed by a circle of radius r. In calculating the 

partial derivatives, we write  

sgn( )i
i

i

x
x

x
∂

=
∂

 

where sgn denotes the signum function. The corresponding differential system is 
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Figure 2.5: Ellipse limit cycle (2.9) with a = 2, b = 1, λ = 1 
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Figure 2.6 illustrates a phase portrait for the simulated system with r = 1, λ = 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.3: Epicycloid and Hypocycloid Limit Cycle Oscillators 

A simple epicycloid / hypocycloid is formed by every point on a circle of radius r 

rotating over the exterior / interior of a circle of radius m (REKTORYS, 1969). If the 

distance d between the generating point and the centre of the rotating circle is greater / 

less than r, the adjective prolate / curate is invoked. For r = 0.5m we have an example 

of a simple epicycloid (nephroid): 

 

 

Figure 2.7 (red) illustrates a phase portrait for the simulated system with r = 1, λ = 1. 

Setting r = m yields a simple (cartoid) epicycloid and its phase portrait is also 

illustrated in Figure 2.7 (blue) with r = 1, λ = 1. 

 

 

Setting r = m and d > r yields the (prolate) epicycloid (the limaçon of Pascal) 

 

 

Figure 2.7 (green) illustrates a phase portrait for the simulated system with r = 1, d = 

2, λ = 1.  
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Figure 2.6: Square limit cycle (2.10) with r = 1, λ = 1 

(2.11)2 2 2 3 4 2
1 2 1 2 2( , ) ( 4 ) 108 0H x x x x r r x= + − − =

(2.12)( )22 2 2 2 2
1 2 1 2 1 1 2( , ) 2 4 ( ) 0H x x x x rx r x x= + − − + =

(2.13)( )22 2 2 2 2
1 2 1 2 1 1 2( , ) 2 4 ( ) 0H x x x x dx r x x= + − − + =
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Note that the trajectories of the limaçon of Pascal limit cycle intersect at the origin to 

form a saddle node.  Finally, a simple hypocycloid (Steiner’s hypocycloid) follows by 

setting r = m/3 in the following equation 

 

 

and is illustrated in Figure 2.8. 
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Figure 2.7: Epicycloid and hypocycloid limit cycles 
(2.11), (2.12), (2.13) with r = 1, λ = 1 in all cases 

Figure 2.8: Steiner’s hypocycloid limit cycle (2.14)  
with r = 1, λ = 1  

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-3

-2

-1

0

1

2

3

x1

x2

( ) ( ) ( )22 2 2 2 2 2 2 4
1 2 1 2 1 2 1 1 2( , ) 8 3 18 27 0H x x x x rx x x r x x r= + + − + + − = (2.14)
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Example 2.4: Cassinian Ovals Limit Cycle Oscillator 

Let 

 

 

be the equation for the Cassinian Ovals (REKTORYS, 1969). Figure 2.9 illustrates a 

phase portrait for the simulated system with b = 1, c = -1, λ = 1, k = 0.5 (green), k = 

1.0 (blue), k = 2.0 (red).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that for k = 1.0 the trajectories cross at a saddle point. As the oscillator traverses 

in the clockwise direction from the left lobe, the trajectory will either continue on that 

lobe via a homoclinic trajectory, or continue on the outside of the right lobe. The 

trajectories do not actually pass through the saddle node since the equilibrium forms a 

separatrix. See Appendix A1 for an electronic circuit realisation of the oscillator. 

2.3.1.2 Nested Limit Cycles and Black Holes 

It is possible to prescribe second order systems with multiple limit cycles as Example 

2.4 demonstrates (for the case where k = 0.5). Nested limit cycle oscillators can also 

be created with multiple stable and unstable limit cycles. Oscillators exhibiting a stable 

limit cycle surrounding an unstable limit cycle have been successfully employed in 

modelling cardiac arrest by DE PAOR (1994). In this model, trajectories crossing the 

unstable separatrix enter a “black hole” and converge to a stable equilibrium. In this 

(2.15)2 2 2 2
1 2 1 2 1 2( , ) ( ) ( ) 0H x x x b x x c x k⎡ ⎤ ⎡ ⎤= − + − + − =⎣ ⎦ ⎣ ⎦
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Figure 2.9: Cassinian ovals limit cycle (2.15) with b = 1, c = -1, 
λ = 1, k = 0.5 (green), k = 1.0 (blue), k = 2.0 (red)  
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section we show how simple nested limit cycles can be obtained using the prescribed 

oscillator technique. 

 

Consider two nested circles (for simplicity) given by the equation 

 

with partial derivatives  

 

 

 

 

Inserting (2.16) and (2.17) into (2.7) yields the desired result: an oscillator with nested 

limit cycles. Figure 2.10 illustrates a simulation for initial conditions inside the inner 

limit cycle and outside the outer limit cycle. Note the different directions of the flow 

for the different limit cycles. 

 

 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
The question naturally arises of where the separatrix lies between the two limit cycles. 

The equation for the separatrix is obtained from 
2 2

1 2
0H H

x x
⎛ ⎞ ⎛ ⎞∂ ∂+ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

  

and by Lemma 2.1 corresponds to an unstable equilibrium. From (2.17) it can be easily 

seen that the separatrix for (2.16) is given by a circle of radius 2 2
1 2 2r r+ . Equation 

( )( )2 2 2 2 2 2
1 2 1 1 2 2 0H x x r x x r= + − + − = (2.16)

2 2
2 2 1 2

1 1 2
1

2 2
2 2 1 2

2 1 2
2

4
2

4
2

r rH x x x
x

r rH x x x
x

⎛ ⎞+∂
= + −⎜ ⎟⎜ ⎟∂ ⎝ ⎠

⎛ ⎞+∂
= + −⎜ ⎟⎜ ⎟∂ ⎝ ⎠

(2.17)

Figure 2.10: Nested (stable) limit cycles 
 with r1 = 1, r2 = 2, λ = 0.2  
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(2.16) can be modified to create a “black hole” by changing the sign of 2
1r . 

Trajectories inside the separatrix now converge to the origin as illustrated in Figure 

2.11.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3.2 Method II 

For our second method of prescribing limit cycle oscillators, we are interested in 

approximating a given periodic time series. We require a technique to encode time 

information into the oscillator. After reviewing the concepts of topological 

equivalence (GUCKENHEIMER and HOLMES, 1983), we propose a method for specifying 

a contour by a Fourier series representation of its radius as a function of angle, 

expressed in Cartesian coordinates. By placing a constraint on the first state variable of 

the oscillator, it is possible to relate the limit cycle to a contour generated by a limited 

class of periodic data. We find a system capable of approximating the contour by 

numerical optimisation and conclude the chapter with an example. 

 

2.3.2.1 Topological Equivalence and Conjugacy 

Consider two dynamical systems given by 

( ),

( ),

n

n

dx f x x
dt
dy g y y
dt

= ∈

= ∈
 

Figure 2.11: Nested (stable and unstable) limit cycles  
with r1 = 1, r2 = 2, λ = 0.2  
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We say they are topologically equivalent if there is a homeomorphism (continuous 

mapping with continuous inverse) : n nh ↔ taking each orbit ( )t xΦ , nx ∈ of the 

first system to an orbit ( )t yΨ , ny ∈ of the second. By topological equivalence, we 

have not required that parameterisation by time be preserved, i.e. for any x and t, there 

is a t1, which could differ from t, such that 

1
( ( )) ( ( ))t th x h xΦ = Ψ  

If t = t1, i.e. time parameterisation is preserved, then the equivalence is called 

conjugacy. The time parameterisation of a single state variable in a two-dimensional 

system is evidently not uniquely defined by the topology of its attractor. To see this 

consider a two dimensional system defined by 

 

 

 

 

At any point in state-space, the slope of a trajectory is given by 

 

 

 

Now, referring to the trajectory illustrated in Figure 2.12, we wish to derive ∆t, the 

(approximate) time taken to go from state P to state Q. 

 

 

 

 

 

 

 

  

By defining, 
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Figure 2.12: Parameterisation by time 
– see text for details 
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we may write the approximation for the time taken for the trajectory to move from 

point P to point Q as 

 

 

It is evident that there are a large number of f and g combinations that might yield the 

same limit cycle contour (2.18) but different time parameterisation (2.19). Each of 

these systems is topologically equivalent but not conjugate. 

 

2.3.2.2 Contours with a Fourier Series Prescribed Radius  

In this section, we outline a method for defining a contour in terms of a Fourier series 

representation of its radius as a function of angle, expressed in Cartesian coordinates. 

We shall limit ourselves to the case where the radius is a single valued function of 

angle (hence only a limited set of periodic time series can be synthesised). Given  
( )r f θ=  

we may write f in terms of its Fourier coefficients 

0
1

( ) cos sin
N

k k
k

f a a k b kθ θ θ
=

= + +∑  

where we note that a truncated series fits in the least-squares sense thus allowing us to 

select the degree of approximation of f by the number of coefficients in the expansion. 

The coefficients are obtained from  

2 Re( )

2 Im( ), 0
k k

k k

a c

b c k

=

= − ≠
 

where 

0

0

1 ( )
T jkw t

kc f e dt
T

θ −= ∫  

and f is periodic with period 2π/w0. The coefficient a0 = c0 is simply the average of f 

over one period. In the phase plane representation, where x1 is the abscissa and x2 is 

the ordinate, we obtain 

 

 

 

 

By invoking De Moivre’s theorem, 

(2.19)1 2

1 21 2

1
2 ( , )( , )

x x
t

g x xf x x
⎡ ⎤∆ ∆

∆ = +⎢ ⎥
⎣ ⎦

2
2 2
1 2

1
2 2
1 2

sin

cos

x

x x
x

x x

θ

θ

=
+

=
+

(2.20)
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0

cos sin (cos sin ) cos ( sin )
n

n k n k

k

n
n j n j j

k
α α α α α α −

=

⎛ ⎞
+ = + = ⎜ ⎟

⎝ ⎠
∑  

and equating real and imaginary parts, we can write the Fourier series as a polynomial 

of sine and cosine functions of fundamental frequency.  Finally, by using (2.20) we 

obtain 1 2( , )r f x x= .  

 

2.3.2.3 Approximating Periodic Waveforms 

Before proposing a two dimensional system capable of approximating a given periodic 

waveform, we need to apply some kind of constraint to the system to enforce 

conjugacy. We may interpret a periodic waveform in terms of its derivative 

coordinates embedding (KANTZ and SCHREIBER, 1997), that is by considering the 

periodic signal of interest ( )s t  and its first derivative given by the approximation 

( )( ) ( )
( )

2
s t t s t t

s t
t

+ ∆ − − ∆
≈

∆
  

This generates a reconstructed phase space (see Chapter IV), which may now be 

directly related to a dynamical system of the form 

 

 

 

for some function Γ . In other words, assuming that (2.21) exhibits the same limit 

cycle contour as the reconstructed phase space, the system described by (2.21) is 

topologically conjugate to the system producing this embedding, and x1(t) will 

approximate s(t). Of course the system describing s(t) may be of a higher order than 

two and hence (2.21) corresponds to a two dimensional projection. In general, we are 

interested in contours that can be described by 

 

 

where the radius f is generated from a Fourier series representation of a single-valued 

function of angle as described in the previous section. We propose a novel method of 

finding Γ  in (2.21) that produces the limit cycle described by (2.22) based on 

constrained optimisation. Consider, for (2.21) the system 

 

 

1
2

2
1 2( , )

dx
x

dt
dx

x x
dt

=

= Γ (2.21)

2 2 2
1 2 1 2 1 2( , ) ( , ) 0g x x x x f x x= + − = (2.22)

1
2

2
0 1 1 2 1 2( , )

dx
x

dt
dx

a x a x h x x
dt

=

= − − − (2.23)
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where h describes the prescribed contour. In matrix notation we write (2.23) as 

0
( )

dX AX
h Xdt

⎡ ⎤
= + ⎢ ⎥−⎣ ⎦

 

where 

0 1

0 1
A

a a
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
 

We specify the quadratic Lyapunov function candidate 
TV X LX=  

where L is a given symmetric positive definite matrix. Differentiating V along the 

system trajectories gives 

 

 

Now, let Q be defined by the Lyapunov equation  

 

and let 

[ ]1 2 1 2 12 1 22 2( , ) ( , )h x x g x x l x l xλ= +  

where g is some contour perhaps defined by (2.22) and 0λ > . Using the last two 

expressions, we can write (2.24) as 

 

 

Equation (2.26) tells us that trajectories far from the contour g will approach inwards 

towards the contour since 0dV dt < and trajectories near the origin will approach the 

contour outwards. By Theorem 2.5 (Poincaré-Bendixson), a limit cycle must exist in 

the annulus (assuming no fixed points). Given the contour g, we wish to find the 

values for the free parameters that results in the closest approximation of the simulated 

limit cycle to the ideal contour. We generate an error function based on the distance 

between the simulated limit cycle and the ideal contour measured over one full 

rotation. The total error is given by (for a discretisation 1 20 ... 2Nθ θ θ π= < < < = ) 

 

 

where r is the radius of the simulated limit cycle and r1 is the radius of the ideal 

contour as illustrated in Figure 2.13.  

 

[ ]1 2 12 1 22 22 ( , )T TdV X A L LA X h x x l x l x
dt

⎡ ⎤= + − +⎣ ⎦ (2.24)

TA L LA Q+ = − (2.25)

[ ]2
1 2 12 1 22 22 ( , )TdV X QX g x x l x l x

dt
λ= − − + (2.26)

1
1

1 ( ) ( )
N

i i
i

e r r
N

θ θ
=

= −∑ (2.27)
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Our goal is to minimise (2.27) and we may state this as a constrained nonlinear 

optimisation problem including the following steps: 

1) Specify a symmetric positive definite matrix Q (by using Sylvester’s Criterion to 

constrain values of the elements of Q) 

2) Specify a0, a1 

3) Solve the Lyapunov equation (2.25). If the solution does not exist or is not unique 

then go to step (1) 

4) Solve (2.23) allowing for an initial transient  

5) Generate the error between the simulated limit cycle and ideal contour given by 

(2.27). 

2.3.2.4 Examples 

The optimisation procedure described in the previous section was applied to a number 

of different contours. In all cases, it was found that the system (2.23) tended to the 

simpler one described by 

 

 

 

 

where 1λ >> . This results in a stiff set of equations that nonetheless produces the 

desired result: parameterisation by time. We conclude the chapter with an example of 

an ellipse and show the effect of large λ  by singular perturbation analysis. 

ideal 
contour 

simulated  
limit cycle 

r1 

x1 

x2 

r 

Figure 2.13: Calculating the error between a simulated limit 
cycle and an ideal contour 
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dx
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λ

=

= − − (2.28)



 46

Example 2.5: Ellipse Oscillator (Method II) 

Consider the equation for the ellipse  

 

 

Inserting (2.29) into (2.28), we observe that the simulated limit cycle approaches the 

ideal (2.29) as the magnitude of λ increases. We can explain this in terms of singular 

perturbation analysis. Scaling the x1 axis and time we may write (2.28) as  

 

 

 

where 

2
1ε

λ
=  

is a small parameter. Since one of the derivatives is being multiplied by a small 

parameter, the system is singularly perturbed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 illustrates a simulation of (2.30) using (2.29) where a = 10, b = 1, ε = 

0.00001. Except along the dx2/dt nullcline where   

1
1 2 2( , )

x
x g x x

ε
≈ −  

x2 changes rapidly by O(1/ε) along BA and DC. The appropriate independent variable 

here is tτ ε= , where τ  is a fast time (as opposed to the slow time t). Making this 

transformation (and as ε→0), the first equation of the system (2.30) becomes 

2 2
1 2

1 2 2 2( , ) 1 0
x x

g x x
a b

= + − = (2.29)

1
2

2 1
1 2 2( , )

dx
x

dt
dx x

x g x x
dt

ε
ε

=

= − − (2.30)

Figure 2.14: Limit cycle from system (2.30) with contour 
specified by (2.29).  Parameters: a = 10, b = 1, ε = 0.00001 
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1
1 1 .

dx
x x const

d
ε

τ
= ⇒ ≈  

which is what occurs along BA and DC. As λ is made very large (conversely ε is made 

very small), the distance over which x2 is changing very rapidly decreases. Figure 2.15 

illustrates the case for ε = 10-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, increasing λ gives a good approximation to the ideal contour at the expense of 

making the system equations stiff. In the limit as λ → ∞ the nullclines for (2.28) are 

given by the x1 axis and the union of the x1 axis and the ideal contour.  

2.4 Summary 

In this chapter, a solid technical foundation for creating prescribed limit cycle 

oscillators has been introduced for use in modelling tasks later in the thesis. Based on 

an extension to the conservative Hamilitonian system, the addition of dissipative terms 

produces asymptotically stable limit cycle behaviour. A wide variety of complex 

topologies were employed to demonstrate the flexibility of the method. It is expected 

that this novel construction will have applications in modelling, signal generation, and 

education. A method for approximating a certain class of periodic time series was also 

presented. In the next chapter, we will extend the Method I construction to produce 

stochastic limit cycle oscillators, which will serve as the basis for a novel model of the 

EEG signal. 

Figure 2.15: Limit cycle from system (2.30) with contour 
specified by (2.29).  Parameters: a = 10, b = 1, ε =10-8 
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CHAPTER III 

MODELLING WITH STOCHASTIC OSCILLATORS  

 

3.1 Introduction 
The human electroencephalogram (EEG) potentials are aperiodic unpredictable 

oscillations with amplitude distributions that are near Gaussian, with intermittent 

bursts of oscillations having spectral peaks in certain preferred bands: 0.1-3.5 Hz 

(delta), 4-7.5 Hz (theta), 8-13 Hz (alpha), 14-30 Hz (beta) and >30 Hz (gamma) 

(FREEMAN, 1992). From a dynamical systems point of view, the bursts of oscillations 

suggest the existence of multiple limit cycles. Power spectral analysis of the EEG 

reveals an approximate underlying 1/f slope, which is indicative of noise (BARLOW, 

1993). We hypothesise that the ensuing activity can be described by limit cycle 

oscillations under continuous modulation by noise. In this chapter we develop the 

mathematical techniques to create prescribed stochastic limit cycle oscillators, and 

apply them to modelling of the EEG.  

 

The term Stochastic Differential Equations (SDE) generally refers to a formulation by 

Itô in 1942 (GARD, 1988) with publications in the modelling applications literature 

only really starting to appear in the last 20 years. Analysis of SDEs differs 

significantly from ODEs due to peculiarities of stochastic calculus. A thorough 

technical exposition on the subject is beyond the scope of this thesis but we make an 

attempt to introduce the basic theory sufficient for our purposes; the interested reader 

is referred to the excellent monographs of GARD (1988), ØKSENDAL (1998), KLOEDEN 

and PLATEN (1999), and SOONG (1973) for a detailed introduction. After describing a 

new numerical toolbox for solving SDEs developed in this research, we extend our 

method for geometrically prescribing oscillators in the previous chapter to produce a 

mathematical method for prescribing stochastic limit cycle oscillators. An analysis of 

the oscillator is performed resulting in the definition of a stochastic limit cycle as an 

invariant set. We present two applications of SDEs for synthesising brain electrical 

activity. The first of these employs a purely mathematic approach and the second is 

based on a biophysical model of WILSON and COWAN (1972). The chapter is 
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concluded with a study of how complex behaviour may arise from simple stochastic 

limit cycle oscillators operating close to a bifurcation. 

 

3.2 Probability Spaces, Random Variables, Stochastic Processes 
To present SDEs and the applications in this chapter requires a basic understanding of 

formal probability theory, which is built on measure theory. We present the bare 

minimum of fundamental concepts (without proof) in this section.  

  

Definition 3.1 A probability space is represented as an ordered triple 

( )PA,,Ω consisting of a sample space of outcomes Ω, a σ-algebra A of subsets of Ω 

called events, and a function P defined on A  called probability. A σ-algebra A of Ω is a 

family of subsets such that 

(i) the empty set A∅∈  

(ii) 1 1
cA AΑ ∈ ⇒ Α ∈  

(iii) if 1 2, ,...Α Α are in A , then 1 2 ... AΑ ∪Α ∪ ∈  

 

The outcomes ω∈Ω are called the simple events and the subsets A are called the 

observable events to which we assign the actual probability measure defined by: 

(i) If 1 AΑ ∈ , 1( ) 0, ( ) 1P PΑ ≥ Ω =  

(ii) If { }n AΑ ⊆  then ( ) ( )n nP P∪Α = Α∑ whenever i jΑ ∩Α =∅  if i j≠  

 

Given the measurable spaces ( )11 , AΩ and ( )22 , AΩ , we can define a mapping 

21: Ω→ΩX . We say X is measurable if 1
1 )( AX ∈Α−  for each 2AΑ∈ , i.e. there is an 

event for each occurrence x of X. The σ-algebra generated by X is the smallest σ-

algebra that contains X i.e. the collection { }1
2( ) : .X A− Α Α∈  Of particular importance 

is the Borel σ-algebra B , the σ-algebra generated by the open sets (or equivalently 

closed sets) of real numbers. Elements of the Borel σ-algebra are called Borel sets 

denoted by Β . Taking ( )22 , AΩ = ( )B,ℜ  we define a random variable as ,: 1 ℜ→ΩX  i.e. 

a random variable is simply an abstraction of information from the possible outcomes. 

We can generalise to higher dimensions by considering random vectors and random 

matrices, where each component is a random variable. 



 50

Definition 3.2 The distribution function )(xFX of a random variable is defined by 

).()( xXPxFX ≤=  If ∫ ∞−
=

x
XX dyyfxF )()( exists, Xf is called the density of X. 

 

Definition 3.3 The expectation of a random variable X is the Lebesgue integral 

(assuming it exists) ∫ Ω
XdP  

Note, for a discrete random variable (and in the limit, the continuous random variable), 

the Lebesgue integral is defined as 

{ }
1

i i
i

XdP x P A
∞

Ω
=

=∑∫  

where { }: ( )i iA X w xω= ∈Ω =  

 

A very powerful extension to Definition 3.3 is conditional expectation. Consider the 

random variable X defined on the probability space ( )PA,,Ω . Let H be a sub-σ-algebra 

of A  i.e. H A⊂ . Thus, although X is a random variable on A , it is not necessarily so 

on H , in other words it is not necessarily measurable with respect to H . We define 

the conditional expectation ( )|E X H  as the random variable Y on the space 

( ), ,H PΩ  satisfying 

,YdP XdP H
Η Η

= Η∈∫ ∫  

The existence and uniqueness of Y is guaranteed by the Radon-Nikodym theorem 

(ØKSENDAL, 1998). Since ( )|E X H  represents the portion of information carried by 

the sub-σ-algebra H , we have two extremes: 

( )|E X H X=  

if X is H −measurable and 

( ) ( )|E X H E X=  

if X and H are independent. In other words, ( )|E X H  is our best estimate of X given 

H . The latter can be seen by noting (for HΗ∈ and where ( )I ωΑ  is the indicator 

function i.e. ( ) 1I ωΑ =  if ω∈Α  and 0 otherwise) 

( ) ( ). . .XdP X I dP XdP I dP E X PΗ Η
Η Ω Ω Ω

= = = Η∫ ∫ ∫ ∫  
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Finally, to build intuition, it is instructive to also consider the conditional expectation 

definition of a random variable of X conditioned on another discrete random variable Y 

and is given by 

( )
1

| ( | )i i
i

E X Y x P X x Y
∞

=

= =∑  

 

Definition 3.4 A stochastic process is a parameterised collection of random variables 

{ } TttX ∈ defined on a probability space ( ), , .A PΩ  

 

The usual notation suppresses theω but a stochastic process is written formally as 

( , ), , .X t t Tω ω∈Ω ∈   

For each fixed Ω∈ω , ),( ω⋅X is the realisation of the process or sample path. It is useful 

to think of t as time and ω as an individual experiment and thus ),( ωtX can be 

interpreted as the result of an experiment ω at time t. Note that t may be discrete or 

continuous. A stochastic process is defined by its joint distributions (sometimes called 

its probability law) of its random variables written as 

1( )... ( ) 1 1 1( ,..., ) ( ( ) ,..., ( ) ).
nX t X t n n nF x x P X t x X t x= ≤ ≤  Not all joint distributions constitute 

a stochastic process; the Kolmogorov Extension Theorem (GARD, 1988) defines when 

they do. A Gaussian process is a stochastic process whose joint distributions are 

Gaussian. 

 

Definition 3.5 A family tA of σ-algebra fields on the probability space 

( )PA,,Ω parameterised by Tt∈ is called a filtration if 

AAA ts ⊂⊂  

for any Tts ∈, such that .ts <  

 

If X(t) is tA measurable for each ,Tt∈  we say that X(t) is adapted to .tA  A filtration tells 

us that our knowledge of a stochastic process increases with time i.e. tA  represents all 

the events that would have happened at time t. 

 

Definition 3.6 A stochastic process Xt adapted to a filtration tA  is called a martingale 

if the conditional expectation ( ) )()( sXAtXE s = . 
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A martingale Xt is sometimes described as a “fair game” process. Interpreting Xs as the 

winnings at time s, a game is fair if the expected winnings for a future time t+s given 

the game history up to the current time s are equal to the current winnings. A super- 

(sub-) martingale replaces the equality sign in Definition 3.6 with a ≤ (≥). For a  

positive, super-martingale, Doob’s maximal martingale inequality (ØKSENDAL, 1998)  

may be written as 

( )0
0

1sup p
t tp

t t T
P X E Xε

ε≤ ≤

⎛ ⎞≥ ≤⎜ ⎟
⎝ ⎠

 

In fact, martingale convergence theorems guarantee the existence of the random 

variable X∞  for super- and sub-martingales for which tX X∞→ with probability one 

and ( ) ( )tE X E X∞→ as t →∞ . We use the concept of super-martingales in the study 

of stochastic stability later in this chapter. 

 

Definition 3.7 A stochastic process X(t) is (strictly) stationary if its probability 

distributions are invariant under an arbitrary time translation. Specifically, if for each 

n, t, then ),...,(),...,( 1)()...(1)()...( 11 ntXtXntXtX xxFxxF
nn ττ ++=  

 

Definition 3.8 A stationary stochastic process is ergodic relative to G if, for every 

[ ] ,)( GtXg ∈ the time average [ ]{ })()]([ txgEtxg =  

where we define 

∫−∞→
+=

T

TT
dtxgTtxg ττ )]([)21(lim)]([  

As an example, )()]([ tXtXg = yields the definition for ergodic in the mean. Similar 

definitions can be made for higher order moments and joint moments.  

 

3.2.1 Wiener Process 

In 1828, the Scottish botanist Robert Brown observed that pollen grains suspended in a 

liquid performed random motion and was subsequently explained later to be the result 

of the random collisions with molecules of the liquid. Norbert Wiener gave the first 

rigorous treatment of Brownian motion as a stochastic process describing the position 

of particleω at time t. This stochastic process is known as the Wiener process (GARD, 

1988) and is defined as a Gaussian process with independent increments 

[ ]( ) ( ) ,W t W s t s− > such that the following properties are observed 
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i.e. the variance of sample paths increase without bound while the mean remains 0. For 

computational purposes, it is convenient to consider discretised Wiener processes. 

Consider a time interval ],0[ T with a discretisation of TN =<<<= τττ ...0 10 with time 

step .NT=δ  

Let, 

nn
WWWn ττ −=∆

+1
  

This can be approximated by  

).1,0(NWn δ≈∆  

Figure 3.1 illustrates an example of a simulated sample path of a Wiener process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The importance of the Wiener process for the sequel stems from its relationship with 

white noise. The covariance of the Wiener process, following from (3.1), is 
 ),min(),( ststCW =   

Although the Wiener process possesses continuous sample paths, it is nowhere 

differentiable. Nevertheless, we might consider the formal derivative below and the 

corresponding covariance  

ststCstC WW ∂∂∂= ),(),( 2  

(3.1)( ) stsWtWE

tWE
W

−=−

=
=

2)]()([

0))((
0)0(

0 0.5 1 1.5
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-1
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1
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t

W(t)

Figure 3.1: Sample path of a Wiener process where Wj = Wj-1 + ∆Wj  
with N =500, T = 1.5 
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which evaluates to 

)()(),(),( 2 sttstUststCstC WW −=∂−∂=∂∂∂= δ  

where U is the Heaviside unit step and δ is the Dirac delta function. Thus the 

covariance of the formal derivative of the Wiener process is the covariance of white 

noise. The key step we use in the following sections is to replace white noise 

contributions with the Wiener process in differential equations. 

 

3.3 Stochastic Differential Equations 
Stochastic Differential Equations arose from early attempts by Langevin to describe 

Brownian Motion in terms of a deterministic or averaged drift term perturbed by a 

noisy diffusive term (KLOEDEN and PLATEN, 1999). The symbolic equation of the form 
dttXtbdtXtadX )(),(),( η+=  

is typically used to define an SDE where a is the drift term, b is the diffusion term, and 

)(tη represents Gaussian white noise. This equation is interpreted as an integral 

equation of the form 

0 0
0( ) ( ) ( , ( )) ( , ( )) ( )

t t

t t
X t X t a s X s ds b s X s s dsη= + +∫ ∫  

Replacing the white noise term )(tη with the time derivative of the Wiener process (as 

discussed in Section 3.2) we arrive at 
 
 

3.3.1 Itô Stochastic Differential Equations 

Evaluating (3.2) by conventional means presents a problem. We might expect to 

interpret the second integral as the Riemann-Stieltjes integral (where just for simplicity 

we consider b(s,X(s)) = b(s), i.e. additive noise): 

 

 

A problem arises in that the Wiener process is of unbounded variation and nowhere 

differentiable. Different values of ns′  within the interval above result in the integral 

converging to different values (in contrast to a regular Riemann-Stieltjes integral). Itô 

showed that the mean-square limit of (3.3) exists and is unique if we take nns τ=′ and 

the integral defined by 

(3.2)
0 0

0( ) ( ) ( , ( )) ( , ( )) ( )
t t

t t
X t X t a s X s ds b s X s dW s= + +∫ ∫

(3.3){ } ),[)()()( 1
1

1 +
=

+ ∈′−′∑ nnn

N

n
nnn sWWsb ττττ
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is known as the Itô integral.  It is easy to see that the expectation of an Itô integral is 0, 

a result which will prove useful later. When discussing stochastic differential 

equations of the form  

 

 

 

we are implying the use of Itô integrals. There is another alternative definition of a 

stochastic integral known as the Stratonovich integral and involves taking ns′  at the 

midpoint of the interval in (3.3).  From a mathematical viewpoint both definitions are 

correct and we can map easily from one definition to the other (sometimes one 

approach can be more advantageous than the other for a particular application). 

 

3.3.1.1 Existence and Uniqueness 

When considering solutions to (3.4), we may deal with strong solutions or weak 

solutions. A strong solution is where the Wiener process W is specified. Weak 

solutions deal with the case where the coefficients a and b are specified but the actual 

Wiener process is not. As with ODEs, SDEs can, but typically do not have explicit 

solutions. The ability of a numerical method to calculate strong/weak solutions is 

called the strong/weak order of convergence and is discussed in Section 3.4. The 

question of whether an SDE actually possesses a unique solution for a numerical 

technique to find is answered next. This is really an extension of the deterministic 

case. 

 

Theorem 3.1 (Existence and uniqueness of stochastic differential equations) 

Equation (3.4) possesses a pathwise unique solution defined on ],0[ T  if for all ],0[ Tt ∈  

- a(t,X) and b(t,X) are measurable with respect to t and x 

- 212121 ),(),(),(),( XXKXtbXtbXtaXta −≤−+−  (Lipschitz condition) 

- )1(),(),( 2222 XKXtbXta +≤+ (growth condition) 

- )( 0tX  is independent of W(t), for t > 0, and { } ∞<2
0 )(tXE  

 

{ }∑
=

+ −
N

n
nnn WWb

1
1 )()()( τττ

( , ) ( , ) ( )dX a t X dt b t X dW t= +

(3.4)
0 0

0( ) ( ) ( , ( )) ( , ( )) ( )
t t

t t
X t X t a s X s ds b s X s dW s= + +∫ ∫
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By pathwise unique, we mean for two equivalent solutions of (3.4) X1(t) and X2(t) with 

continuous sample paths, we have 

 

 

The solution of (3.4) subject to Theorem 3.1 is a stochastic process and is called an Itô 

diffusion. More accurately, the family of solutions x
tX ,0  (where xX =0 ) ℜ∈∀x is an Itô 

diffusion. 

 

3.3.1.2 Itô Formula 

Stochastic integrals do not transform under the usual rules of the chain rule. The 

stochastic analogue of the chain rule for Itô integrals is known as the Itô formula. 

Consider  

( , )t tY f t X=  

where Xt is a solution of (3.4) and f has continuous partial derivatives  

f
t

∂
∂

, f
x
∂
∂

, and 
2

2

f
x

∂
∂

.  

By taking the Taylor expansion of Yt around t and Xt we obtain 

 

 

 

 

 

 

The usual chain rule can be deduced by taking infinitesimal increments and 

incorporating only the first derivatives. In the stochastic case, noting that 
2(( ) )E dW dt= an extra term enters though the last term on the RHS of (3.5) yielding 

the Itô formula (inserting (3.4) and taking infinitesimal increments) 

 

 

 

3.3.1.3 Stable in Probability 

Lyapunov’s Direct Method (see Chapter II) can be extended for the stochastic case by 

introducing the definition for stability by HAS’MINSKII (1980). Consider Xt the solution 

2
2

2

1
2t t

f f f fdY a b dt b dW
t x x x

⎧ ⎫∂ ∂ ∂ ∂
= + + +⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭

(3.6)

2 2 2
2 2

2 2

( , ) ( , )

1 ( ) 2 ( )
2

...

t tY t t X X Y t X
f ft x
t x

f f ft t x x
t t x x

+ ∆ + ∆ =

∂ ∂⎧ ⎫+ ∆ + ∆⎨ ⎬∂ ∂⎩ ⎭
⎧ ⎫∂ ∂ ∂

+ ∆ + ∆ ∆ + ∆⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭
+ (3.5)

1 2
0
sup ( ) ( ) 0 0

t T
P X t X t

≤ ≤

⎛ ⎞− > =⎜ ⎟
⎝ ⎠
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of (3.4), we say it is stable in probability or stochastically stable if for any 0ε >  and 

0 0t ≥  

0 0

0 0

,

0
lim sup 0t x

tx t t
P X ε

→ ≥

⎛ ⎞≥ =⎜ ⎟
⎝ ⎠

 

Furthermore, the solution Xt  is stochastically asymptotically stable if  

0 0,sup 0 1t x
t

t
P X

→∞

⎛ ⎞→ =⎜ ⎟
⎝ ⎠

 

As with the deterministic case, Lyapunov’s method is concerned with time derivatives 

of the Lyapunov function V(x) (we’ll consider the 1-dimensional case initially).  By 

invoking the Itô formula we may write 

 

 

 

Denoting the first term as 

 

 

we may state the stochastic version of Lyapunov’s Direct Method by simply replacing 

dV/dt with LV.  

 

Theorem 3.2 (Stochastic Version of Lyapunov’s Direct Method) If one can find a 

definite function V for the set of differential equations (3.4) such that LV is either 

identically zero or semi-definite with opposite sign, then the motion is stable. 

 

Sketch of Proof  

Consider (3.4) with a steady state solution Xt=0 (and hence a(t,0)=0 and b(t,0)=0). 

Writing (3.7) in integral form yields 

 

 

Assuming the inequality 

0LV ≤  

allows us to write (3.8) as 

 

2
2

2

1
2

V V VLV a b
t x x

∂ ∂ ∂
= + +
∂ ∂ ∂

2
2

2

1
2t t

V V VdV a b dt b dW
x x x

⎧ ⎫∂ ∂ ∂
= + +⎨ ⎬∂ ∂ ∂⎩ ⎭

(3.7)

(3.8)
0 0

0 0( , ) ( , ) ( , ) ( , )
t t

t t

t
VV t X V t X LV X d b X dW
xτ τ ττ τ τ ∂

− = +
∂∫ ∫

(3.9)
0

0 0( , ) ( , ) ( , )
t

t

t
VV t X V t X b X dW
xτ ττ ∂

− ≤
∂∫
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By taking expectations of both sides (and noting that the expectation of an Itô integral 

is 0) we get  

0 00( ( , ) ) ( , )t t tE V t X A V t X≤  

which states that the Lyapunov function evaluated along the solution curves of (3.4) is 

a super-martingale (i.e. it tends to decrease) and the maximal martingale inequality  

( )0
0

0
1sup ( , ) ,t t

t t
P V t X V t Xε

ε≥

⎛ ⎞≥ ≤⎜ ⎟
⎝ ⎠

 

holds. We have avoided the technical difficulty that since V is not necessarily smooth 

on X = 0, the Itô formula (see Section 3.3.1.2) cannot be used directly. This problem 

can be avoided by minor changes to the proof – see GARD (1988) for a more complete 

version. Finally, for the d-dimensional case we may generalise LV to  

 

 

 

3.4 Numerical Solution of SDEs 
Deterministic approaches for numerically solving deterministic differential equations 

do not carry over directly to stochastic differential equations due to the different 

calculus involved and hence a different approach is required. Moreover, and although 

there has been much development in the recent two decades, the techniques for solving 

SDEs are still in their infancy.  

3.4.1 Strong vs. Weak Convergence 

To compare different solution techniques, it is instructive to introduce a measure of 

accuracy between a given solution and the actual solution of an SDE. Unlike the 

simpler deterministic case, we need to consider two kinds of approximations namely 

those related to sample paths and those corresponding to distributions. Consider the 

actual solution of an SDE as Xt and an approximated solution as Yi, discretised over N 

steps. The strong order of convergence γ is then given evaluated at the final time 

instant via 

 

 

for all step sizes (0,1)δ ∈  and K is a finite positive constant. In other situations, close 

pathwise approximations may not be required (for example maybe just the mean or 

(3.10)( )
, 2

1 , 1

1
2

i jd d
i T

i i ji i j

V VLV a bb
x x x= =

∂ ∂
= +

∂ ∂ ∂∑ ∑

( )T NE X Y Kδ γδ− ≤
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higher order moments) and the weak order of convergence β might be more 

appropriate 

( )( ) ( )( )T N gE g X E g Y Kδ βδ− ≤  

where g is any polynomial. We will be only concerned with the strong order of 

convergence measure since we will be working with direct simulation of trajectories 

for comparison with real data. 
 

3.4.2 Stochastic Taylor Series 

The Taylor series expansion is used as the basis for creating deterministic numerical 

solver techniques by including higher order terms for increased accuracy. A stochastic 

version of the Taylor series (KLOEDEN and PLATEN, 1999) in integral form can be 

derived by taking the integral form of (3.4) and repeatedly applying the Itô formula: 

 

 

 

where R is a remainder containing higher order terms. Equation (3.11) contains 

multiple Itô integrals as building blocks and their approximation is a considerable 

challenge for numerical techniques. 

3.4.3 Numerical Solution Algorithms 

In this section we shall consider a collection of numerical solution algorithms of 

increasing strong order accuracy and complexity namely the Euler-Maruyama (strong 

order 0.5), Milstein (strong order 1.0), and Runge-Kutta (strong order 1.5) methods. 

We will consider approaches that avoid the need for derivatives to simplify 

implementation (see next section). The monograph by KLOEDEN and PLATEN (1999) 

serves as the ‘recipe book’ for this and the following sections.  

3.4.3.1 Euler-Maruyama 

The Euler-Maruyama method is probably the simplest solver for SDEs and is an 

extension of the Euler method used for deterministic differential equations. The 

scheme follows from the integral form of (3.4) if we consider a uniform discretisation 

of N equal time steps from time 0 to time T. This yields a time step of  

 

0 0 0
0 0

2

0 0 1 2
0 0

( ) ( )

( ) ( )

t t

t t t tt t

t

t t t t

X X a X d b X dW

b X b X dW dW R

τ

τ

τ τ

τ= + +

′+ +

∫ ∫

∫ ∫ (3.11)
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1n nt T Nτ τ+∆ = − =   

The scheme may be written as 

        

where t∆ is the time step and 

1( ) ( )n n nW W Wτ τ+∆ = −          

For 0b = , we obtain the usual deterministic Euler scheme. The random variables in 

(3.12) may be obtained from a Gaussian distribution of mean 0 and variance t∆ .The 

multi-dimensional case with dimension d for the drift vector and d x m for the 

diffusion matrix is given by 

 
 
where jW∆ refers to the jth component of the increments of an m-dimensional Wiener 

process (each component is independent). 

3.4.3.2 Milstein  

Adding an extra term from the stochastic Taylor series results in the Milstein scheme 

of strong order 1.0 

 

 

where the supporting Ŷ is given by 

 

 

This allows us to replace the derivative of b with its equivalent deterministic Taylor 

expansion (assuming negligible higher order terms). For generalising to the multi-

dimensional case, a useful simplification will be made. We consider only diagonal 

noise, that is each component of the Itô process Xt is disturbed by the corresponding 

component of the Wiener process Wt. This implies that the diffusion matrix b is 

replaced with a diagonal matrix i.e. , 0 fori jb i j= ≠ . The multi-dimensional case 

with dimension d for the drift vector and d x d for the diffusion matrix is then given by 

 

 

 

 

1 ( ) ( )n n n n nY Y a Y t b Y W+ = + ∆ + ∆ (3.12)

,
1

1

m
k k k k j j

n n
j

Y Y a t b W+
=

= + ∆ + ∆∑

{ }{ }2
1

1 ˆ( ) ( ) ( , ) ( ) ( )
2n n n n n n n nY Y a Y t b Y W b Y b Y W t

t
τ+ = + ∆ + ∆ + − ∆ −∆

∆
(3.13)

(3.14){ }{ }

,
1

, , 21 ˆ( , ) ( )
2

k k k k k k
n n

k k k k k k
n n

Y Y a t b W

b Y b W t
t

τ

+ = + ∆ + ∆

+ − ∆ −∆
∆

n̂ nY Y a t b t= + ∆ + ∆
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where the supporting Ŷ is given by 

ˆ k k
n nY Y a t b t= + ∆ + ∆  

3.4.3.3 Runge-Kutta  

By adding further terms from the stochastic Taylor series, and again assuming 

diagonal noise, the resultant multi-dimension 1.5 strong order scheme is given by 

 

 

 

 

 

 

 

 

 

 

 

 

where the supporting values are given by 

1ˆ

ˆ ˆ( )

k k
n

k k k k

Y Y a t b t
d

Y b Y t

±

± + +

= + ∆ ± ∆

Φ = ± ∆
 

Note that an extra simplification of assuming an autonomous system b matrix was 

made in (3.14) to reduce the complexity and increase the efficiency of 

implementations. Finally note that the Z∆ term in (3.14) is an approximation of  
1 2

1 2
n

n n

s

sdW ds
τ

τ τ

+

∫ ∫  

and is related to W∆ by considering two normally distributed random variables N(0,1) 

U1 and U2 in  
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3.4.4 SDESolver: A Toolbox for the Numerical Solution of SDEs 

Although there has been an accelerating development of algorithms for the numerical 

solution of stochastic differential equations in the last decade or so, the availability of 

software toolboxes is still very rare. To facilitate application of the theory presented in 

this chapter, it quickly became apparent that a new software toolbox needed to be 

created.  SDESolver is an extensible toolbox for performing numerical solution of 

SDEs and is used in the simulation of all the stochastic differential systems found in 

this thesis. An Object-Oriented (O-O) framework was designed to facilitate new 

solvers to be “plugged-in”.  The core classes are written in ANSI C++ for portability. 

The toolbox is further packaged for Linux in “GNU style”, facilitating a suite of 

command line arguments and the ability to load dynamical systems at runtime from 

shared libraries thus obviating the need to recompile the main binary when changes are 

required. Three solvers are supplied with the toolbox: 

- Euler-Maruyama (strong order 0.5) 

- Milstein (strong order 1.0) 

- Runge-Kutta (strong order 1.5) 

For simplicity we have assumed the use of Itô integrals and explicit solvers that do not 

require the derivatives of the system to be solved. The source code can be found in 

Appendix A2 (CD-ROM).  

3.4.4.1 O-O Framework 

The object-oriented architecture of the toolbox is illustrated in Figure 3.2 using 

Unified Modelling Language (FOWLER and SCOTT, 2000). Solver implementations are 

derived from the base class CSolver and instantiated via the Parameterised Factory 

CSolverFactory (GAMMA et al, 1994). The CSolverSettings class aggregates the solver 

independent settings. To allow the solvers to be developed independently of the 

dynamical system to be solved (and vice versa), a generic interface CDynSystem is 

employed to represent a dynamical system. This class has a method called 

GetDriftAndDiffusion(), which returns the a and b components. This is noteworthy as 

it differs from traditional (deterministic) solvers, which often employ a function to 

return the entire right hand side of the equation to be solved. Different algorithms for 

solving SDEs on the other hand manipulate the drift and diffusion components 

independently and hence need to be obtained from the dynamical system separately.  
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To ease the development of new solvers, the Template Method pattern (GAMMA et al, 

1994) is employed so that CSolver defines a skeleton of the solution procedure, 

deferring the specific details of advancing the solution to subclasses. Figure 3.3 

illustrates a sequence diagram of the solution procedure.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

A solver is invoked by calling the Run() method. This calls Initialise(), which seeds 

the random number generator (either by a user supplied value or one derived from the 

system time), creates the Wiener process realisation, and initialises memory for the 

solution. If specified, the Initialise() method writes the Wiener process realisation to 

disk also. For each time step, the drift and diffusion components of the system to be 

solved are retrieved via the GetDriftAndDiffusion() and the Advance() method of the 

particular solver is invoked. The solution process terminates with a call to the Finish() 

method, which writes the solution to disk. Figure 3.4 illustrates the usage.  

Figure 3.2: UML class diagram of the toolbox 

Figure 3.3: UML sequence diagram of the solution procedure for an 
example solver (CEMSolver) 
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3.4.4.2 Random Number Generation 

Gaussian distributed deviates are required for modelling a Wiener process and thus the 

stochastic contribution in SDEs. The CSolver base class creates these random 

variables during the Initialise() method by invoking an efficient Box-Muller 

transformation of a uniformly generated sequence of random numbers (BOX and 

MULLER, 1958). The latter are generated by using a high quality random number 

generator, the “Mersenne Twister” (MATSUMOTO and NISHIMURA, 1998). It should be 

noted that the random generator provided in the standard C library generally performs 

very poorly when employed in stochastic modelling settings. Figure 3.5 illustrates a 

typical distribution of the Wiener increments created by this method. To simplify the 

implementation and to prevent the introduction of errors, the Wiener process is 

calculated at m_nStepSize increments and the solver computes the solution at 

increments of m_nStepSize*m_nMultiplier, thus avoiding the need for interpolation. 

 

 

 

 

 

 
 
 
 
 

Figure 3.5: High quality N(0,1) for 10,000 points generated by 
SDESolver using the Mersenne Twister and the Box-Muller algorithm 
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CSolverSettings settings; 
// … set member variables of settings as appropriate… 
 
// Create solver from factory 
CSolver* pSolver = CSolverFactory::CreateSolver(CSolverFactory::MILSTEIN, settings); 
if (NULL != pSolver) 
{ 

// Register dynamical system to be solved 
CDynSystem* pSystem = new CGBMDynSystem(); 
pSolver->RegisterDynSystem(pSystem); 
 
// Run solver 
if (!pSolver->Run()) 
{ 
 fprintf(stderr, “%s\n”, pSolver->GetLastError().c_str()); 
} 

} 

Figure 3.4: Usage for SDESolver core classes (C++) 
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3.4.4.3 The SDESolver Toolbox in Action 

To demonstrate SDESolver, we’ll solve an SDE from the famous Black-Scholes 

model for pricing derivatives (BLACK and SCHOLES, 1973). The equation, used to 

model the value of shares on the stock market, is also known as Geometric Brownian 

Motion and is given by 

 
 
Equation (3.16) possesses the explicit solution 

         

 

which affords us the ability to view the performance of the different solvers (the 

toolbox has a setting that forces it to write the Wt to disk and hence a plot of (3.17) can 

be made).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 illustrates equation (3.17) (dashed) with the corresponding Euler-Maruyama 

solution of (3.16). Figure 3.7 is the same as Figure 3.6 but this time using the Runge-

Kutta solver and produces a more accurate solution (in fact the solutions coincide 

perfectly) for the same step size. Finally, Figure 3.8 illustrates the ensemble average of 

100 simulations with a different Wiener process used for each simulation. 

 

 

Figure 3.6: Equation (3.17) dashed, and the Euler-
Maruyama (strong order 0.5) solution of equation 

(3.16) for a step size of 0.01 (and multiplier 1) 

(3.16)dS Sdt SdWµ σ= +

(3.17)21( )
2

0
tt W

tS S e
µ σ σ− +

=
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3.5 Stochastic Limit Cycle Oscillators 
In this section, we extend our method for synthesising prescribed limit cycle 

oscillators from Chapter II to the case of stochastic limit cycle oscillators. The 

(deterministic) system under consideration (reproduced here for convenience) is  

 

 

 

1
2 1

2
1 2

0

H Hx H
x x

H Hx H
x x

λ

λ λ

∂ ∂
= −
∂ ∂

∂ ∂
= − − >

∂ ∂
(3.18)

Figure 3.7: Equation (3.17) dashed, and the Runge-
Kutta (strong order 1.5) solution of (3.16) for a step 

size of 0.01 (and multiplier 1) 

Figure 3.8: Three solutions of (3.16) using the 
Runge-Kutta solver with different Wiener process 

realisations and, superimposed (dashed), an average 
of 100 simulations. 
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where we have shown previously that the limit cycle defined by 
0),( 21 =xxH  

is asymptotically stable. We introduce Gaussian white noise by applying the following 

transformation 

 

whereσ is the intensity of the noise. Equation (3.19) might be interpreted as 

‘geometric additive noise’. Inserting (3.19) into (3.18) and replacing the white noise 

term by the derivative of the Wiener process, we formulate the vector stochastic 

differential system 

 

 

 

where the column vectors are defined as 

1 1

2 2

,
dX dW

dX dW
dX dW
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

3.5.1 Stochastic Stability Analysis 

In this section we investigate the stability of the limit cycle in (3.20) with a view to 

defining the behaviour. We consider a positive definite function, which is a nonlinear 

measure of the distance from the prescribed noise-free contour. 

  

We wish to show that the resultant behaviour of the oscillator in the neighbourhood of 

the prescribed contour forms an invariant set and thus trajectories may not leave this 

set with probability one. Writing the inequality  

 

we may deduce from Theorem 3.2 that V evaluated along solution trajectories of (3.20) 

forms a super-martingale 

0 00( ( , ) ) ( , )t t tE V t X A V t X≤  

and the maximal martingale inequality  

( )0
0

0
1sup ( , ) ,t t

t t
P V t X V t Xε

ε≥

⎛ ⎞≥ ≤⎜ ⎟
⎝ ⎠

 

holds. Thus the expectation of the distance from the prescribed contour is non-

increasing.  

(3.19))(),(),( 2121 txxHxxH ση+→

(3.20)

2 1 1

1 2 2

0

0

H H HH
X X X

dX dt dW
H H HH
X X X

λ λ
σ

λ λ

∂ ∂ ∂⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟∂ ∂ ∂
− − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

2V H= (3.21)

(3.22)0LV ≤



 68

In particular we note this holds over the entire phase space since V is a nonlinear 

measure of distance and therefore 

 

It remains to find under what conditions (3.22) is obeyed. For clarity, we separate 

(3.22) into two terms 1LV , 2LV and thus 21 LVLVLV += . The first term evaluates to the 

usual chain rule and hence the term used in proving asymptotic stability for the 

deterministic version (see Chapter II), namely 

 

 

which is negative semi-definite for .0>λ  The second term evaluates to 

 

 

 

 

 

 

 

and hence 2
2 ( )LV O σ= . Thus we may state our main result with regard to stability of 

the prescribed stochastic limit cycle oscillator: 

For sufficiently small ,σ  0LV ≤  and the distance from the prescribed contour H 

measured along the system trajectories is a super-martingale and thus an invariant set 

exists in the neighbourhood of the contour which we denote as a stochastic limit cycle. 

 

In other words, the distance from the (noise free) contour measured along trajectories  

“tends to decrease” and trajectories in the neighbourhood of the contour must remain 

in the neighbourhood with probability one for all time. 

 

3.5.2 Examples of Stochastic Limit Cycle Oscillators 

We present two examples of stochastic limit cycle oscillators in this section. 

 

Example 3.1: Square Limit Cycle Oscillator 

Consider the square contour described by 
2
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perturbed by additive noise (t)ση  where σ is the intensity of the noise. Writing in the 

form of (3.20), the stochastic differential system is 

 

 

 

Figure 3.9 illustrates a numerical simulation of (3.23) with parameters as per the figure 

caption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3.2: Steiner’s Hypocycloid 

Consider Steiner’s Hypocycloid contour given by 
 
 
 
perturbed by additive noise (t)ση  where σ is the intensity of the noise. The stochastic 

limit cycle oscillator can be obtained by inserting (3.24) into (3.20) where the partial 

derivatives are given by 

 
2 2 2 2 2
1 2 1 2 1 1

1
4( ) 24 24 36H x x x rx rx r x

x
∂

= + + − +
∂

 

 
and 
 

2 2 2
1 2 2 1 2 2

2
4( ) 48 36H x x x rx x r x

x
∂

= + + +
∂

 

 
 

( )
( )

2
2 1 2 1 1

2
21 1 2 2

sgn( ) sgn( ) sgn( ) 0
0 sgn( )sgn( ) sgn( )

X X X r X X
dX dt dW

XX X X r X

λ λ
σ

λλ

⎛ ⎞− + − −⎛ ⎞⎜ ⎟= + ⎜ ⎟−⎜ ⎟− − + − ⎝ ⎠⎝ ⎠ (3.23)

( ) ( ) ( )22 2 2 2 2 2 2 4
1 2 1 2 1 2 1 1 2( , ) 8 3 18 27 0H x x x x rx x x r x x r= + + − + + − = (3.24)

Figure 3.9: Stochastic Square Limit Cycle Oscillator 
Simulation parameters: Runge-Kutta, r=1, λ=0.08, σ=0.5, 

0.01t∆ = , T=200 
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Figure 3.10 illustrates a numerical simulation of (3.24) with parameters as per the 

figure caption. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

3.6 Modelling the EEG Signal 
In this section we will construct a mathematical model of the EEG signal based on the 

concept of stochastic limit cycle oscillators. This model might be termed an empirical 

model: we are attempting to find a simple mathematical model to describe an ordinary 

language model of the EEG i.e. “that the EEG is a manifestation of some equilibrium 

under noisy perturbation” where we interpret the equilibrium as limit cycle behavior. 

Limit cycles have been used as a model for electroencephalogram rhythms previously 

by DEWAN (1964) and derived from biophysical reasoning by WILSON and COWAN 

(1972) and FREEMAN (1975). Of course a limit cycle in the usual dynamical systems 

theory meaning does not produce a convincing model of the EEG since the real EEG 

signal does not exhibit regular oscillations and hence many of the models in the 

literature merely serve to indicate the presence of limit cycle behaviour. We create a 

model of the EEG comprising multiple stochastic limit cycle oscillators corresponding 

to the known spontaneous rhythms. The model is based on the construction above 

(3.20) with four independent oscillators to represent the theta, delta, alpha, and beta 

oscillations. Data from the model is visually compared to real EEG data by employing 

time series plots, 2-d phase plots, power spectral density plots, and amplitude 

histograms. In Chapter IV, we revisit the model using techniques from nonlinear time 

series analysis to enable more advanced comparisons with the actual EEG to be made. 

Figure 3.10: Stochastic Steiner’s Hypocycloid Limit Cycle 
Oscillator. Simulation parameters: Runge-Kutta, r=1, λ=0.1, σ=0.2, 

0.0005t∆ = , T=50 
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3.6.1 Multiple Stochastic Limit Cycle Model of the EEG 

Our model of the EEG is a stochastic one. Stochastic effects are ubiquitous in the 

brain; in fact neurons themselves require aperiodic activity simply to survive 

(FREEMAN, 1999). We impose some structure on the underlying stochastic process by 

regarding the EEG as the summated output of four stochastic limit cycle oscillators. 

The goal is to create an empirical model based on the noisy modulation of equilibria 

(limit cycles), which generates aperiodic solutions that simulate the statistics, spectra, 

and visually displayed patterns of the EEG. The proposed model is based on 

constrained noise, and is quite different to another type of common constraint called 

band-limiting. Clearly this model contrasts with other mechanisms such as 

deterministic chaos for generating aperiodic activity, e.g. as suggested by FREEMAN 

(1992) to model the EEG.  

 

To construct the oscillators, we employ the simple topology of  an ellipse 

 

 

Including the perturbation effects of additive noise (t)ση on the contour, the resultant 

vector stochastic differential system using (3.20) is  

 

 

 

 

3.6.1.1 Time-Scaling Stochastic Differential Equations 

To produce oscillators of different frequency we must time scale (3.26). However, 

since this is not an ODE, the usual time-scaling techniques are not appropriate and we 

must use a modified approach. Suppose ( )X t  is the solution of the SDE 

( , ) ( , ) ( )dX a t X dt b t X dW t= +  

then by the Itô formula (Section 3.3.1.2) ( ) ( ( ))Y t f X t= also satisfies a SDE 

( , ) ( , ) ( )dY a t Y dt b t Y dW t= +  

For time-scaling, we are interested in  
( ) ( ( ))Z X tτ τ=  

where ( )t τ is some time change. For small h we have 

2 2
2 1 2 1 1

2 2 2 2 2

2 2
21 1 2 2

22 2 2 2
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22 2 01

X X X X X
b a b a adX dt dW

XX X X X
ba a b b

λ λ
σ

λλ

⎛ ⎞⎛ ⎞ ⎛ ⎞− + −⎜ ⎟⎜ ⎟ −⎜ ⎟⎝ ⎠⎜ ⎟= + ⎜ ⎟⎜ ⎟⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟− − + −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠ (3.26)
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a b

= + − = (3.25)
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where 

 

 

and ( )Z τ is the solution of the SDE 

( , ) ( , ) ( )dZ a t Z dt b t Z dW t= +  

The time change ( )t τ may also be random (see Theorem 8.5.7 in ØKSENDAL (1998) for 

a proof of the time change formula for Itô integrals). To scale (3.26) we introduce 
t ετ=   

and by using (3.27) we may restate (3.26) as (replacing τ with t) 

 

 

 

 

3.6.1.2 Calibrating Oscillator Frequencies 

Using the formulation (3.28), it is possible to configure the four oscillators 

corresponding to the delta, theta, alpha, and beta bands. Table 3.1 illustrates the 

frequency ranges, medians, and normalised medians for the four rhythms in the EEG. 

The gamma frequency band > 30 Hz is omitted since it is not usually regarded as a 

spontaneous rhythm - being induced by certain visual stimuli for example 

(NIEDERMEYER and LOPES DA SILVA, 1999). 
 
TABLE 3.1: EEG RHYTHM FREQUENCY RANGE, MEDIAN, AND NORMALISED MEDIAN 
Rhythm Range Median Normalised Median 
Delta 0.1 – 3.5 Hz 1.8 Hz 1.000 
Theta 4 – 7.5 Hz 5.75 Hz 3.194  
Alpha 8 – 13 Hz 10.5 Hz 5.833 
Beta 14 – 30 Hz 22 Hz 12.222 

 
An alternative method of scaling the frequencies of the oscillator comes from 

modifying the radius of the prescribed contour (3.25) and thus the amplitude of the 

oscillator. To see this (focusing on the deterministic case 0σ = first and letting a = b to 

form a circular contour), we may substitute the solution 

( , ) ( ( ), ) ( )

( , ) ( ( ), ) ( )

a Z a t Z t

b Z b t Z t

τ τ τ

τ τ τ

′=

′= (3.27)
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22 2 01

X X X X X
b a b a adX dt dW
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λ λ
ε σ ε

λλ

⎛ ⎞⎛ ⎞ ⎛ ⎞− + −⎜ ⎟⎜ ⎟ −⎜ ⎟⎝ ⎠⎜ ⎟= + ⎜ ⎟⎜ ⎟⎛ ⎞ ⎜ ⎟−⎜ ⎟ ⎜ ⎟− − + −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
(3.28)
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1
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( ) cos( )
( ) sin( )

X t r
X t r

θ
θ

=
=

 

into (3.26). Solving for ,r θ  allows us to restate the system in polar coordinates 

 

 

 

Equation (3.29a) has two equilibria. A stable equilibrium for r a= and an unstable 

equilibrium at the origin 0r = (as already noted in proof of Theorem 2.7, Chapter II). 

The second equation (3.29b), however, elucidates something interesting: the square of 

the amplitude is inversely proportional to angular frequency. When stated in terms of 

power (proportional to square of the amplitude) this translates to the 1/f power law, a 

phenomenon ubiquitous in nature and observed by the EEG spectrum (BARLOW, 1993; 

WRIGHT and LILEY, 1996; FREEMAN et al, 2000c). This property of the oscillator 

facilitates a parsimonious mechanism for setting the oscillator frequency by altering 

the noise-free amplitudes of each component such that the frequency of the 

component’s oscillator matches the normalised median value in Table 3.1. As a result 

of this selection procedure, the model’s spectrum consisting of the four components 

naturally demonstrates a 1/f power distribution. Now, referring back to (3.28) we may 

infer that to maintain the same noise intensity over different radii of the circle contour, 

we must scale the diffusion term by the radius. Thus, we finally arrive at (3.30) for the 

equation of a single oscillator. 

 

 

 

 

 

3.6.1.3 Simulation Results 

Simulations were carried out using SDESolver with a 1.5 strong order Runge-Kutta 

algorithm (Section 3.4.3.3). A step size of 0.001 was used with a multiplier of unity 

(Section 3.4.4.2). Figure 3.11 illustrates (in clockwise order starting from upper left) a 

time series, 2-d phase plot, amplitude distribution, and power spectral density for the 

model output. The radius of the circle contour prescribed by the oscillators was chosen 
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according to 1a f= where f  is the normalised median frequency for the 

corresponding frequency band as illustrated in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In reality, the EEG power spectrum does not follow a strict 1/f distribution, in 

particular it contains elevated spectral components at the alpha and beta frequencies 

(NIEDERMEYER, 1999; BARLOW, 1993; DUMERMUTH and MOLINARI, 1987). 

Accounting for this, Figure 3.12 illustrates the output where the power of both the 

alpha and beta components has been elevated by a factor of 2. For the purposes of 

comparison, EEG was acquired from the occipital region (Oz) with subjects seated in 

an upright position, eyes closed, and relaxed. Data was acquired at a sampling rate of 

128 Hz and low-pass filtered with a cutoff frequency of 30 Hz. Figure 3.13 illustrates a 

comparison between actual EEG data and simulated model data. Finally, Figure 3.14 

illustrates the time series, 2-d phase plot, amplitude distribution, and power spectral 

density of the actual EEG from Figure 3.13. The 2-D phase plot was achieved by time-

delay embedding with a delay of 3 samples corresponding to 23.4 ms (ABARBANEL, 

1996). 

 

Figure 3.11: (In clockwise order) Time series, phase plot, amplitude histogram, PSD of the 
summated output of four stochastic limit cycle oscillators (3.30) corresponding to the delta, 

theta, alpha, and beta EEG components. Simulation details: Runge-Kutta, 0.001t∆ = ,  
T = 100, λ = 0.01, σ = 4. 1/f power scaling used 
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Figure 3.12: (In clockwise order) Time series, phase plot, amplitude histogram, PSD of the 
summated output of four stochastic limit cycle oscillators (3.30) corresponding to the delta, 

theta, alpha, and beta EEG components. Simulation details: Runge-Kutta, 0.001t∆ = ,  
T = 100, λ = 0.01, σ = 4. 1/f power scaling used with x2 scaling of alpha and beta power 

Figure 3.13: Comparison between actual EEG (top) and the simulated EEG (bottom) from the 
multiple stochastic limit cycle oscillator model. Simulation details: Runge-Kutta, 0.001t∆ = , 

T = 100, λ = 0.01, σ = 4. 1/f power scaling used with x2 scaling of alpha and beta power 
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3.6.1.4 Discussion 

The visually displayed pattern of activity of the model agrees well with the actual EEG 

(in the awake, resting state from the occipital region) as is evident by Figure 3.13. In 

addition, the amplitude statistics appear in good agreement with the actual EEG, 

yielding a close approximation to a Gaussian distribution (the actual EEG is not 

always strictly Gaussian but approaches it under certain conditions (NIEDERMEYER and 

LOPES DA SILVA, 1999)). The 2-d phase plots of the model and actual EEG are also 

quite similar – an exact match would never be expected since the latter is a phase-

space reconstruction and thus an invariant measure preserving mapping from the “true 

space”. Nevertheless, a 2-d projection is a good tool for uncovering certain underlying 

structures (ABARBANEL, 1996). 

 

The stochastic limit cycle model of the EEG is a natural extension to the models of 

WILSON and COWAN (1972) and DEWAN (1964) who employed deterministic limit 

cycle oscillators. These models clearly cannot produce the aperiodic activity and 

statistics produced by the current model. The outputs of the oscillators in our model 

are similar to that used by BARLOW (1993) where random modulation of extrema and 

slopes in the same proportion yield waves of constant frequency. The current model 

Figure 3.14: (In clockwise order) Time series, phase plot, amplitude histogram,  
and PSD of the actual EEG 
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differs from Barlow’s being based on formal mathematics lending itself to analysis 

and extendable to any prescribed contour. Our model is in good agreement with 

Barlow who pointed out that random waves of constant frequency provide for an 

effective model the EEG with abundant alpha activity. That the EEG might be 

appropriately modelled as a stochastic limit cycle was reinforced by HERNÁNDEZ et al 

(1996). These authors showed that spike and wave activity from patients suffering 

from petit mal epilepsy could be accurately modelled by the output of a stochastic 

non-linear autoregressive model, which was shown to exhibit limit cycle behaviour 

when the noise component is removed. Finally, we note that we could have also 

included a white noise component in our model to more closely reflect measured EEG 

spectra. The white noise component is usually attributed mostly to measurement noise 

(DUMERMUTH and MOLINARI, 1987; ZETTERBERG, 1977). 
 
 

3.7 Wilson-Cowan Stochastic Oscillator 
The Wilson-Cowan model for densely interconnected excitatory and inhibitory 

populations of neurons was introduced in Section 1.3.1 (WILSON and COWAN, 1972). 

We now extend the model to account for noisy interactions from neighbouring 

populations by reformulating the original equations into a pair of stochastic differential 

equations. This resultant model builds on the previous section’s purely mathematical 

approach for the EEG by providing a model with biophysical meaning. We perform a 

phase-plane analysis to consider the major phenomena elicited in the original work by 

Wilson and Cowan, namely the presence of multiple equilibria with hysteresis, 

damped sinusoidal impulse responses, and limit cycle behaviour, but this time taking 

stochastic effects into account. 

 

The point of where to introduce stochastic effects into the original work by Wilson and 

Cowan is an interesting one; the equations are reproduced here for convenience 

 

 

 

 

The original model employs two state variables (E, I) to represent a neural population 

consisting of two densely interconnected subpopulations of excitatory and inhibitory 

1 2

3 4
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= − + − − + (3.31)
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neurons. The relevant variables are the proportion of cells of the subpopulations, 

which become active per unit time. This results in a deterministic model for the 

dynamics interpreted as a treatment of the mean values of the underlying statistical 

processes. Thus, introducing stochastic affects at the single neuron level does not 

make sense for this model. A more appropriate approach is to consider stochastic 

influences on the entire population resulting from neighbouring populations. For 

simplicity, we consider stochastic affects conducted by excitatory coupling only. The 

appropriate variable under consideration is P. We model stochastic effects by making 

the transformation 

 

 

where η  is white noise and σ is the noise intensity. The noise input is a variable of the 

activation function ( )eS x which we take (as in the original work of Wilson and Cowan) 

to be the logistic sigmoid 

 

 

 

where S(0) = 0 and the maximum slope of 4a is attained at θ . Inserting (3.32) and 

(3.33) into (3.31) does not facilitate a SDE formulation. However, we may perform a 

Taylor expansion of ( )eS x about 1 2c E c I P+ + to get 

 

 

and for sufficiently small σ , we may neglect the higher order terms. Inserting (3.32) 

into  (3.31), using (3.34), and replacing the noise term with the derivative of the 

Wiener process yields 

 

 

 

where the derivative of (3.33) is given by 
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3.7.1 Hysteresis Behaviour 

Wilson and Cowan suggested hysteresis constituting multiple stable equilibrium states 

as a basis for short-term memory. Without hysteresis, noisy perturbations could cause 

spurious transitions between stable equilibriums. Figure 1.6 illustrates a hysteresis 

loop formed by varying the excitatory input P. Our modification here to account for 

stochastic effects via (3.32) does not change this phenomenon – in fact hysteresis may 

be seen as a form of noise insensitiveness.  

3.7.2 Limit Cycle Behaviour 

Wilson and Cowan suggested limit cycle behaviour as a basis for EEG oscillations. 

However, their original model is unable to model the aperiodicity seen in the actual 

EEG. Figure 3.15 illustrates stochastic limit cycle behaviour for (3.35). Note that 

modelling stochastic effects exhibits random modulations of both the extrema and 

frequency of the resultant waveform E. That the frequency is also modulated is not 

surprising since Wilson and Cowan previously showed that the frequency of 

oscillation increases with P.  

 

 

 

 

 

 

 

 

 

3.7.3 Damped Oscillatory Responses 

For a certain range of parameters, the Wilson-Cowan model demonstrates a damped 

oscillatory response to a short impulse. An evoked potential may be interpreted as the 

difference between excitatory and inhibitory potentials measured in the neighbourhood 

of the recording electrode. Figure 3.16 illustrates four responses using a brief impulse 

to the excitatory input P with additive white noise (3.32). The result of modelling 

stochastic effects introduces randomness in the latency of the oscillatory response for 

different realisations of the Wiener process (i.e. experiment trials). Variation in 

Figure 3.15: Limit Cycle behaviour produced by the stochastic Wilson-Cowan model (3.35). 
Parameters: c1 = 16, c2 = 12, c3 = 15, c4 = 3, ae = 1.3, ai = 2, θe = 4, θi = 3.7, 

 re = 1, ri = 1, τ = 8, P = 1.25, Q = 0. Runge-Kutta solver: σ = 0.015, 0.005t∆ = , T = 800
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amplitude and latency across trials is well known in evoked and event-related potential 

recordings with many techniques for so-called latency corrected averaging having 

been suggested (e.g. GUPTA et al, 1996; YU et al, 1994). Interestingly, these 

techniques do not suggest any models to explain the latency, in fact they attempt to 

remove it in the averaging process, and it appears significant that the stochastic 

extension of the Wilson-Cowan model predicts the variation in latency. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

3.8 Complex Behaviour From Simple Stochastic Oscillators 
A major attraction of employing models of the EEG based on chaos is in the inherent 

ability of chaotic systems to produce complex aperiodic solutions from a small number 

of seemingly simple differential equations in addition to its suitability as a mechanism 

for information processing based on the existence of multiple attractors. The ability to 

produce complex aperiodic solutions from simple dynamical systems is not unique to 

chaotic dynamics and we demonstrate this here by employing a stochastic limit cycle 

oscillator possessing multiple homoclinic trajectories. Recall (from Chapter II) that a 

homoclinic trajectory is one which connects an equilibrium point with itself. For a 2-

dimensional system the equilibrium point must be a saddle node and a good example 

of a simple oscillator with homoclinic trajectories is the Cassinian Ovals oscillator 

introduced in Example 2.4. By following the construction in Section 3.5 we can 

produce a stochastic limit cycle version by inserting  

 2 2 2 2
1 2 1 2 1 2( , ) ( ) ( )H x x x b x x c x k⎡ ⎤ ⎡ ⎤= − + − + −⎣ ⎦ ⎣ ⎦ (3.36)

Figure 3.16: Damped oscillatory response to a brief, noisy stimulus 
produced by the stochastic Wilson-Cowan model (3.35). Parameters: 

 c1 = 15, c2 = 15, c3 = 15, c4 = 3, ae = 1, ai = 2, θe = 2, θi = 2.5, re = 1, 
ri = 1, τ = 10, Q = 0. Runge-Kutta solver: σ = 0.015, 0.005t∆ = , T = 60 
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into (3.20). Figure 3.17 illustrates the time series and phase plots of a simulation with 

parameters as per the figure caption. As the trajectories approach the saddle node at 

the origin, they either continue around the outer contour or persist on the wing. The 

time series produced resembles that generated by the Lorenz attractor (although 

without the spiralling on each lobe), a popular demonstration model for chaos 

(THOMPSON AND STEWART, 1986) although here we are using a very different 

mechanism. 

 

Chaotic activity has been proposed as a speculative mechanism for information 

processing in the brain by FREEMAN (1992). Sensitivity to initial conditions is 

suggested as a mechanism by which small microscopic inputs from sensory cells may 

elicit large-scale macroscopic responses across sensory cortex regions to facilitate 

Hebbian learning. In this model, a global attractor may exist for the sensory cortex 

developed over time by changes in synaptic strengths modifying the dynamics. In 

response to a particular stimulus, the system might jump to a corresponding wing of 

the attractor and this may be achieved with a minimal expenditure of energy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Freeman’s model of information processing by chaotic mechanisms is also achievable 

by a stochastic limit cycle model similar to that illustrated in Figure 3.17. The only 

requirement on the system is that the attractor admits qualitatively different behaviour 

for small perturbations. This may be realised when the system is at a bifurcation point 

as is the case with the Cassinian Ovals oscillator for k = 1. In fact, a related argument 

Figure 3.17: Cassinian Ovals stochastic limit cycle oscillator. 
Runge-Kutta, a=1,b=-1, k=1, λ=0.06, σ=0.5, 0.0005t∆ = , T=50 
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is made by HOPPENSTEADT and IZHIKEVICH (1997), whose modelling work is based on 

the concept that only those neurons participate nontrivially in the brain processes 

whose dynamics are at a bifurcation point, which they denote as the “Fundamental 

Theorem of Weakly Connected Neural Network Theory”. The authors cite a number 

of mechanisms that might maintain neurons close to their bifurcation point – the most 

plausible might be the tonic background activity of neighbouring neurons. A natural 

extension of this theorem related to brain electrical activity might assume the existence 

of attractors close to a bifurcation; stochastic influences then admit aperiodic activity, 

and qualitatively different behaviour corresponding to information processing is also 

possible with the minimal expenditure of energy. 

 

3.9 Summary 
The construction for creating prescribed limit cycle oscillators (Method I) from the 

previous chapter was extended to the stochastic case by employing Itô calculus. The 

noise component was introduced in such a way that it actually interacts with the 

dynamics and might be termed dynamical noise. Itô calculus afforded us the ability to 

produce conditions for which the stochastic limit cycle behaviour may be described as 

an invariant set. A numerical toolbox (SDESolver) was created to solve SDEs and has 

proven useful throughout this work. This toolbox, being completely extensible and 

platform independent, should prove useful to other researchers.  

 

The stochastic limit cycle oscillator was employed as a basis for creating a model of 

the EEG signal. Visually displayed patterns, spectra, and statistics of the model were 

shown to be in good agreement with real EEG data. The Wilson-Cowan model was 

also extended to the stochastic case and investigated via numerical techniques. The 

extended biophysically-based model was shown to produce stochastic limit cycle 

behaviour and variability in amplitude and latency of evoked potentials. Complex 

behaviour of a stochastic oscillator at a bifurcation was investigated with the 

motivation of demonstrating how the appealing features (for the purposes of modelling 

the EEG) of chaotic oscillators may also be approximated by stochastic oscillators.  

 

In the next chapter, we employ nonlinear time series analysis in an effort to further 

validate the stochastic limit cycle oscillator model of the EEG against actual data. 
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CHAPTER IV 

ANALYSIS IN RECONSTRUCTED PHASE SPACE 

 

4.1 Introduction 

This chapter is concerned with the examination of actual and model EEG data (the 

latter employing the stochastic limit cycle oscillator model from Chapter III) using 

nonlinear time series analysis (ABARBANEL, 1996; KANTZ and SCHREIBER, 1997). At 

this point, the reader might wish to review Section 1.4, which provides the motivation 

for the material presented here. Many of the studies in the literature regarding the 

nonlinearity of the EEG have been preoccupied with attempting to show that the 

aperiodic behaviour of the EEG might be ascribed to chaotic dynamics. In reality, a 

time series can be anything from purely random (independent identically distributed 

(i.i.d.) random variables) to strictly deterministic (KANTZ and SCHREIBER, 1997) and 

we shall study the EEG with this in mind.  

 

The field of nonlinear time series analysis grew out of the pioneering work by TAKENS 

(1981). The core of the analysis focuses on reconstruction of a phase space from 

observed data known as embedding. Features of the system may be studied in 

reconstructed phase space by way of invariant measures such as attractor dimension, 

Lyapunov exponents, and entropies in addition to studying determinism by 

forecasting. The interested reader is referred to the excellent monographs of 

ABARBANEL (1996) and KANTZ and SCHREIBER (1997). A solid review of nonlinear 

dynamics is also recommended e.g. GUCKENHEIMER and HOLMES (1983). 

 

Nonlinear time series analysis techniques are introduced by example with a model 

neuron exhibiting chaotic bursting behaviour. We subsequently investigate 

nonlinearity in the EEG by employing two principal techniques: correlation dimension 

(GRASSBERGER and PROCACCIA, 1983) and locally linear vs. globally linear (LL-GL) 

modelling (CASDAGLI, 1991). Results of the former have been reported in detail by 

many groups (e.g. BABLOYANTZ, 1985; BABLOYANTZ and DESTEXHE, 1986; 

PRITCHARD and DUKE, 1992; THEILER and RAPP, 1996), however the latter technique, 
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which forms a bridge between stochastic and deterministic methods, has only been 

briefly applied to the EEG. Here we apply both techniques to qualitatively different 

EEG data originating from the eyes-closed relaxed state, deep sleep, and petit mal 

absence seizures respectively. A statistical framework is employed facilitating 

comparison of the correlation dimension indication of nonlinearity with other 

published data and greatly facilitating our interpretation of the much less studied LL-

GL technique. The significance of the LL-GL method is borne out of its direct 

practical consequence for EEG feature extraction, as we shall see later. In Section 4.4, 

we apply the same techniques to data obtained from the stochastic limit cycle 

oscillator model of the EEG. In particular, we are interested in how the nonlinearity 

present manifests itself in the results of phase space analysis techniques, which are 

commonly applied to EEG data in the literature.  Finally, the chapter is concluded with 

a study of recent results regarding the applicability of nonlinear time series analysis 

(originally intended for deterministic systems) to stochastic data.  

4.2 Nonlinear Time Series Analysis  

It is instructive to introduce nonlinear time series analysis techniques by example on a 

model which we know possesses chaotic dynamics. A number of nonlinear time series 

analysis tools were reviewed before embarking on the work in this chapter; the 

TISEAN package (HEGGER et al, 1999) easily emerged as the superior toolbox and is 

used for the majority of the analyses that follow. 

4.2.1 Hindmarsh-Rose Bursting Model Neuron 

In this section we present a modified version of the FitzHugh-Nagumo model, itself a 

qualitative abstraction of the Hodgkin-Huxley model presented in Chapter I 

(HINDMARSH and ROSE, 1982; HINDMARSH and ROSE, 1984). The model equations are 

 

 

 

where x represents the membrane potential, y is the recovery variable, and I is an 

externally applied current. Bistability is introduced by virtue of the fact the 0y =  

nullcline intersects the 0x =  nullcline in three places to form three critical points: a 

stable node 0.5(1 5)x = − + , a saddle node 1x = − , and an unstable node 0.5( 1 5)x = + − + , 

3 2

2

3

1 5

dx y x x I
dt
dy x y
dt

= − + +

= − − (4.1)
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which is surrounded by a stable limit cycle as illustrated in Figure 4.1. Note that the 

stable manifold of the saddle point forms a separatrix and thus trajectories will 

approach the limit cycle for a sufficiently large perturbation from the resting state.  

 

 

 

 

 

 

 

 

 

 

 

 

To generate bursting, a slow variable is added (corresponding to the effect of an 

additional slow inward current) so that the membrane potential variable can be moved 

in and out of the bistable regime.  The resulting equations are given by 

 

 

 

 

The system exhibits chaos for parameter values: I = 3.281, cx = -1.6, s = 4.0, r = 

0.0021 (ABARBANEL et al, 1996). Figure 4.2 illustrates a time series plot of the x 

variable (representing membrane potential) and a 2-d phase plot projection (x,y) 

exhibiting chaotic dynamics. 
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Figure 4.1: Phase plane for (4.1) with I = 0 
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( )x

dx y x x I z
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dz r s x c z
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= − −⎡ ⎤⎣ ⎦ (4.2)

Figure 4.2: Time series x and phase plot (x,y) for (4.2) 
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Simulations were carried out via a variable step 4th order Runge-Kutta algorithm and 

the output was down-sampled to a step-size of 0.1. While isolated neurons can show 

chaotic signatures e.g. ABARBANEL et al (1996), it is worth noting that neurons 

embedded in the cortex typically generate pulse trains that are mostly random, 

exhibiting a Poisson distribution (FREEMAN, 1999). Nevertheless, the Hindmarsh-Rose 

model (4.2) serves its purpose here by providing a reference chaotic system to 

introduce nonlinear time series analysis techniques. There are alternative chaotic 

dynamical models we could have used here instead (e.g. Lorentz, Rössler etc) for 

which the techniques in the next section are very well behaved. The Hindmarsh-Rose 

model presented a challenge however, particularly for calculating a useful time delay 

for embedding and for accurately estimating the correlation dimension; the example 

should help alert the reader that nonlinear time series analysis is still a new field and 

requires careful application to achieve meaningful results.  

4.2.2 Reconstruction of Phase Space 

Embedding refers to a technique by TAKENS (1981) for transforming a scalar measured 

time series into a vector value time series. The sequence of vectors is interpreted as a 

trajectory of the dynamical system producing a phase space reconstruction. The 

reconstructed phase space is related to the unknown phase space of the underlying 

dynamical system by some smooth coordinate transform (not readily available in 

practice), assuming the measurement function was smooth. As a result, invariant 

measures such as Lyapunov exponents, attractor dimension, and entropies are the 

same for the reconstructed phase space and actual phase space. The embedding 

theorem may be summarised thus: 

 

Theorem 4.1 (TAKENS, 1981; SAUER et al, 1991) Given are a dynamical system 

( )x f x= in a phase space dΓ ⊂ , a measurement function : dh → , and a sampling 

interval t∆ . Let the trajectory x(t) be confined to an f-invariant set A ⊂ Γ , with a box-

counting dimension Df. Denote the scalar measurements obtained through the 

sampling by : ( ( ))ns h x t n t= = ∆ . Consider the delay embedding space spanned by delay 

vectors 2 ( 1)( , , ,..., )n n n n n mS s s s sτ τ τ− − − −= . If m > 2Df, then there exists a unique smooth map 

from A  into the delay embedding space, which is invertible and has nonzero 
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derivative on the image of A  in m . A  is then said to be immersed in m . This holds 

for generic h, generic f, almost all t∆ , and every Nτ ∈ . 

 

The reconstructed phase space is formally equivalent to the actual phase space, i.e. for 

the purposes of evaluating invariant measures the reconstructed phase space is the 

same as actual phase space.  From a heuristic point of view, the justification for using 

a time delay embedding can be seen by observing that information in higher order 

derivatives differs by simply adding a new delayed version of the signal e.g. 

2

2 2

( ) ( )

( 2 ) 2 ( ) ( )

dx x t t x t
dt t
d x x t t x t t x t
dt t

+ ∆ −
≈

∆
+ ∆ − + ∆ +

≈
∆

 

It is indeed possible to create an embedding by using a derivative coordinate 

embedding (as used in Section 2.3.2). Derivative coordinates are nothing but linear 

transformations of the standard delay coordinates (KANTZ and SCHREIBER, 1997). 

However, delay coordinates suffer from the problem that they accentuate noise and 

hence we do not use them here. 

 

Theorem 4.1 does not suggest an optimal delay τ  to use – in fact in theory, for an 

infinite amount of infinitely accurate data, any delay will work. In practice, this of 

course is not the case and we look more closely at this problem next. Theorem 4.1 also 

does not specify the ideal dimension m to use (the box-counting dimension can only be 

estimated after embedding – see Section 4.2.3). We review a method for estimating 

dimension in Section 4.2.2.2. The reader should keep in mind that visual interpretation 

of 2-d and 3-d reconstructed phase space is probably one of the most powerful tools in 

nonlinear time series analysis – the human eye is an exceptionally well-trained pattern 

recogniser! Visual analysis is recommended both as a first step and as a ‘sanity check’ 

for choosing delays and dimensions for reconstructing the phase space. 

4.2.2.1 Finding the Optimal Delay 

If we choose a time interval τ  (to construct the lagged coordinates) too short the 

system will not have evolved significantly. On the other hand if the interval is too 

large, two consecutive points will be statistically independent of each other by virtue 

of the exponential divergence of neighbouring trajectories. A good prescription in 

practice (ABARBANEL, 1996) is to take the abscissa coordinate value at the first 
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minimum in average mutual information versus time delay between pairs of samples. 

Given a source A={ai}, and a related measure B={bj}, the average mutual information 

can be written as 

/AB A A BI H H= −  

where  

2
1( ) log
( )A i

ii

H P a
P a

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

is the entropy of source A and 

/ 2
,

1( , ) log
( / )A B i j

i ji j

H P a b
P a b

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

is the conditional entropy – the uncertainty remaining about A after observing B. In 

terms of our problem domain, the average mutual information can be written as   

 

 

where τ  is an integer. Note, for two unrelated observations ( ) ( ) ( ),n n n nP s s P s P sτ τ+ +=  

the mutual information is zero. For two trivially identical observations the mutual 

information just reflects the entropy. Equation (4.3) may be thought of as a kind of 

nonlinear autocorrelation function. Figure 4.3 illustrates a plot of (4.3) for the 

Hindmarsh-Rose model (4.2).  

 

 

 

 

 

 

 

 

 

 

 

In this case there is no immediately discernable minimum, as occurs for the classic 

Lorentz or Rössler attractors for instance.  A difference from these other models might 

have been expected since it is chaotic bursting behaviour that (4.2) exhibits. We must 
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∑ (4.3)

Figure 4.3: Average mutual information plot for x in (4.2) 
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resort to estimation of a sensible time delay by inspecting the reconstructed phase 

space - too small a delay will yield vectors clustered in a diagonal, too large a delay 

will yield an erroneous spread of the vectors with the structure being destroyed by 

even small noise contributions (KANTZ and SCHREIBER, 1997). Phase plots in 3-d 

suggest a delay of 30 samples as a reasonable compromise. 

4.2.2.2 Finding the Optimal Dimension 

Theorem 4.1 states that any embedding dimension m > 2Df  is valid for the phase space 

reconstruction. In many circumstances a smaller dimension can be found. However, 

too small a dimension will result in erroneous overlaps of the attractor. The technique 

employed here for embedding dimension estimation is called false nearest neighbours 

(ABARBANEL, 1996) and is based upon the concept that a pair of points constituting 

false neighbours are close together as a result of projection on a dimension that is too 

small to properly unfold the attractor. Projecting to larger embedding dimensions will 

result in the elimination of the false neighbours. We call the minimum dimension 

where all false neighbours are eliminated the embedding dimension dE. Denoting a 

vector in reconstructed phase space as 

( 1)( , ,..., )n n n n mS s s sτ τ− − −=  

we may write its nearest neighbour in dimension m as 

( 1)
ˆ ( , ,..., )k k k k mS s s sτ τ− − −=  

The square of the Euclidean distance between nearest neighbours in d is 

( )22
( 1) ( 1)

1

ˆ ˆ[ ]
d

d n m k m
m

R n S Sτ τ− − − −
=

= −∑  

The difference in distance between nearest neighbours in dimension d+1 compared 

with the distance in dimension d can be written as 

 

 

 

When this value is greater than a certain threshold, we consider the nearest neighbours 

to be false neighbours. In practice, a factor of ~15 works well and results are quite 

insensitive to variations in this (ABARBANEL, 1996). Figure 4.4 illustrates the fraction 

of false nearest neighbours as a function of dimension suggesting an embedding 

dimension of dE = 3, which agrees with the actual dimension of (4.2). The false nearest 

1
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neighbour method degrades slowly and gracefully under the influence of noise and 

thus is quite suited for application to real data (ABARBANEL, 1996). 

 

 

 

 

 

 

 

 

 

 

  

 

4.2.3 Invariant Measures 

After a successful embedding, according to Theorem 4.1, we end up with a finite 

sample of points on an invariant set. We wish to characterise this invariant set by 

measures that are independent of the details of the measurement process and the 

reconstruction of the state space. We call such estimates invariant measures, where in 

particular we assume ergodicity (values are independent for almost any choice of 

initial conditions) so that quantities may be defined as averages over the natural 

measure of the phase space (KANTZ and SCHREIBER, 1997). By averages over the 

natural measure in phase space we mean averages centred around the data points. The 

common invariant measures used in nonlinear time series analysis include dimensions, 

Lyapunov exponents, and entropies. Not all invariant measures can be obtained 

robustly from data. In this section, influenced by the EEG literature, our main focus is 

on the correlation dimension. We briefly touch on Lyapunov exponents, a simple 

concept that helps build intuition about chaotic dynamics.  

4.2.3.1 Correlation Dimension 

Dissipative attractors for chaotic systems possess a complicated, strange geometry and 

are fractals in the sense of MANDELBROT (1985). Non-integer dimensions exhibit self-

Figure 4.4: Fraction of FNNs for x in (4.2) 
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similarity on all length scales. The classic mathematical example of self-similarity is 

the Cantor set.  A chaotic attractor, on the other hand, only shows self-similarity 

locally and possesses position dependent scaling factors (KANTZ and SCHREIBER, 

1997). Since a strange attractor exhibits a fractal dimension it is thus an interesting 

property of the chaotic system to measure. Consider a point set located in m . If we 

cover the set with a grid of boxes of length ε and denote the number of boxes which 

contain at least one point by ( )M ε , then for a self-similar set we obtain 

( ) , 0fDM ε ε ε−∝ →  

where fD  is called the box counting dimension. There are other ways to define and 

generalise dimensions e.g. based on the Renyi entropies (ABARBANEL, 1996; KANTZ 

and SCHREIBER, 1997). In practice, the most robust and efficient estimate of dimension 

is the correlation dimension proposed by GRASSBERGER and PROCACCIA (1983). We 

first define the correlation sum for a collection of points nx  in some vector space as the 

fraction of all possible pairs of points which are closer than a given distance ε  

1 1

2( , ) ( )
( 1)

N N

i j
i j i

C N x x
N N

ε ε
= = +

= Θ − −
− ∑ ∑  

where Θ is the Heaviside step function, ( ) 0xΘ = if 0x ≤  and ( ) 1xΘ =  if 0x > . Taking 

N →∞ and for small ε we observe scaling according to ( ) DC ε ε∝  

We define the correlation dimension D by  

0

ln ( , )( , )
ln

lim lim ( , )
N

C Nd N

D d N
ε

εε
ε
ε

→ →∞

∂
=

∂
=

 

This definition coincides with the usual notion of dimension when applied to non-

fractal objects. In practice, there is often a limited amount of data available, a lower 

bound on the size of ε due to finiteness of samples, and an upper bound on the size ε  

due to the finite size of the attractor. As a consequence, we have to select a region (if 

any) where ( ) DC ε ε∝  by visual inspection. This precludes the use of robust automatic 

methods for dimension estimation and due to subjectivity, is often a source of errors 

(KANTZ and SCHREIBER, 1997).  

 

The correlation sum represents the probability that a pair of randomly chosen points 

on the reconstructed attractor are less than a certain distance apart, where we assume 

that the distance between pairs of points is due solely to geometry. In reality, 
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dynamically correlated points will also be close in space. To avoid the effects of this 

temporal correlation, we introduce the Theiler window nmin (THEILER, 1986) to 

suppress trivial pairs of points. In practice, we estimate the correlation sum over a 

range of embedding dimensions (the correct dimension D can only be seen for m > D) 

and thus (including the Theiler window) we now restate the correlation sum as 

( )
min

min min 1

2( , )
( )( 1)

N N

i j
i j i n

C m S S
N n N n

ε ε
= = +

= Θ − −
− − − ∑ ∑  

A natural choice for nmin might be the time when the autocorrelation function goes to 

zero. However, this only measures linear correlations. Happily, the problem of 

selecting a safe value for nmin has been solved by PROVENZALE et al (1992) using a 

space-time separation plot. The technique involves plotting contour maps of the 

fraction of points closer than a distance ε at a given time separation ∆n i.e. we plot 

constant curves of  

( )n n nP S S ε+∆ − <  

as a function of ∆n. Figure 4.5 illustrates a space-time separation plot for x in (4.2). 

The contour lines may be interpreted in how far one must go to find a given fraction of 

pairs for a particular separation in time ∆n. The plot suggests a Theiler window of 120. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 illustrates the correlation sum (left) and corresponding dimension values 

(right) for the chaotic Hindmarsh-Rose model (4.2). We can locate a scaling region 

that yields an estimate of D = 1.98 ± 0.1. 

Figure 4.5: Space-time plot for x in (4.2). Fractions of pairs 
0.1, 0.2, etc  (bottom to top) for a given space and time 

resolution. Note saturation for 120n∆ ≈  
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For a typical plot of ( , )D m ε vs. ε , one may differentiate four regions. For large ε  

effects of the finite size of the attractor are seen. On a smaller scale the scaling region 

should exhibit the correct value for D. On smaller scales again, noise dominates 

(particularly for large dimensions) and finally on the smallest scale there are large 

fluctuations due to the finiteness of the samples.  

4.2.3.2 Lyapunov Exponents 

The hallmark of chaos is sensitivity to initial conditions, that is, exponential 

divergence of neighbouring trajectories. The average exponent of the divergence is 

known as the Lyapunov exponent. Let 
1nS  and 

2nS denote two infinitesimally close 

points in state space such that 
1 2 0n nS S δ− = . The distance nδ∆ at a time in the future is 

 
1 2n n n n nS S δ+∆ +∆ ∆− =  

The maximal Lyapunov exponent λ may be defined as  

 

 

The two limits are required to avoid saturation effects due to distance. A positive 

exponent is observed for chaos (and imposes a limit on the prediction horizon – see 

next section), a negative exponent is observed for a stable fixed point, and an exponent 

of zero is observed for flows constrained to a volume of phase space. There are in fact 

as many Lyapunov exponents as there are dimensions in the system. The full spectrum 

of Lyapunov exponents may be obtained by determining the product of the Jacobians 

at every point of the trajectory and obtaining the logarithm of the eigenvalues (actually 

Figure 4.6: Correlation sum (left) and local slopes (right) for dimensions m = 3,…,9
(left: top to bottom; right: bottom to top)  for x in (4.2) 
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this is somewhat more technical than described here, requiring the formation of the 

Oseledec matrix – see ABARBANEL (1996) for more details).  

 

In this chapter, we are not concerned with estimating Lyapunov exponents from data – 

the interested reader is referred to the methods by WOLF et al (1985), ECKMANN et al 

(1986), and KANTZ (1994). 

4.2.4 Prediction 

For a deterministic system, knowledge of the current state and its dynamics (equations 

of motion) are all that is required to predict the next state with complete certainty. For 

a chaotic system, the same holds but our prediction horizon is adversely affected by 

the sensitivity to initial conditions. In this section we discuss how to construct models 

of nonlinear dynamical systems. A successful model may be used for prediction, 

control, or used to create an arbitrary amount of artificial data to study (the 

bootstrapping method). Our interest in prediction stems from the fact that it is a very 

robust indication of determinism (KANTZ and SCHREIBER, 1997) and we employ it in 

the next two sections. 

 

FARMER and SIDOROWICH (1987) were the first to demonstrate how to extract 

equations of motion from the delay embedding space. A deterministic dataset sampled 

at discrete times is described by 

 

Denote by nΓ ⊂ ℜ a small neighbourhood of Sn. To find the predicted value of Sn the 

zeroth order approximation employs the average of the future neighbours in 

reconstructed phase space i.e. 

1 1ˆ
n

n js S+ + Γ
=  

We can extend this to produce a local linear model (valid in a small neighbourhood of 

the reference point) 

 

 

where the subscripts on a and b emphasise that we create a local linear model for each 

vector n in reconstructed phase space. We select a and b such that they minimise 

1ˆ ( )n ns G S+ = (4.4)

1ˆn n n ns a b S+ = +
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2
1ˆ( )

j n

n n n n j
S

e s a b S
∈Γ

+= − +∑  

The collection of all these local linear models constitutes the global nonlinear 

dynamics and may be interpreted as linearisations of the global dynamics at various 

points in the phase space.  

 

Another method of modelling involves choosing an appropriate functional form for G 

in (4.4) such that it is capable of modelling the whole attractor. A popular method is to 

consider decompositions onto basis functions and perform an optimisation of the 

weighted superposition of the basis functions during the fitting procedure (KANTZ and 

SCHREIBER, 1997). Choices for G include polynomials and radial basis functions, with 

neural networks providing for a possible mechanism for optimisation. This procedure 

can be considered parametric (as opposed to the previous non-parametric techniques) 

and could be of utility in feature extraction. More explicitly, signals for which 

nonlinear time series techniques are well suited could be fitted with an appropriate 

functional form for G and its free parameters used as features for pattern recognition 

applications.  

4.2.4.1 Locally Linear vs. Globally Linear Modelling 

Although a time series can be anything from purely random (independent identically 

distributed (i.i.d.) random variables) to strictly deterministic, there only exist 

established methods to optimally exploit either linear correlations or nonlinear 

determinism (KANTZ and SCHREIBER, 1997). Our hypothesised stochastic limit cycle 

oscillator model of the EEG, where noise contributions actually interact with the 

dynamics, produces a time series that is at neither of the two extremes. In this section 

we present a recent technique by CASDAGLI (1991) that attempts to bridge the gap 

between stochastic and deterministic approaches and facilitates an exploratory 

approach to the investigation of the dynamics underlying a time series. In the 

following sections we build on the preliminary investigations of Casdagli with 

application to the EEG and apply the method to the stochastic limit cycle oscillator 

model of the EEG from Chapter III.  

 

Consider as before, a dataset sampled at discrete times described by (4.4). We wish to 

construct local linear approximations to G by using a variable number k of neighbours. 
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A small value of k corresponds to a deterministic approach to modelling (as described 

in the previous section) and a maximum value of k corresponds to fitting a stochastic 

linear autoregressive model to the data. Intermediate values of k correspond to fitting 

non-linear stochastic models. To apply the procedure, we select a test point is  and its 

associated delay vector iS  for a ∆n-forecasting test. The fitting set is defined as all 

vectors that do not include the component is  (i.e. we wish to perform an out-of-sample 

test). The k nearest neighbours (1) ( ),...,j j kS S of iS  from the fitting set are obtained and 

the following autoregressive (AR) model fitted 

 

 

where αi are the AR coefficients, m is the embedding dimension, and τ is the delay 

time (for more information on AR models, see Chapter VI). We use (4.5) to generate a 

∆n forecast ˆ ( )i ns k+∆ for the test point is  and write the error as  

ˆ( ) ( )i i n i ne k s k s+∆ +∆= −  

The normalised error over the entire test set is 

 

 

where σ is the standard deviation of the time series. We refer to graphs of E(k) versus k 

as LL-GL plots.  

 

Figure 4.7 illustrates (superimposed on the same plot for ease of comparison) the LL-

GL plot for the Hindmarsh-Rose model and for the AR(2) process given by 

 

 

The chaotic model demonstrates a clear deterministic signature with accurate 

predictions for small neighbourhoods - in fact the local linear (globally nonlinear) 

model yields two orders of prediction accuracy above the globally linear model. In 

contrast, the AR(2) model shows a diminishing error for increasing neighbourhood 

size. These examples demonstrate modelling at two ends of the scale. For a high 

dimensional attractor, and for limited data, there will be insufficient data to 

approximate (4.4) and we will be forced to approximate it with a nonlinear stochastic 

model (intermediate k) (CASDAGLI, 1991).  

 

1
2

21( ) ( )i
i

E k e k
σ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ (4.6)

( ) 0 ( ) ( 1) , 1,...,
1

m

j l n n j l n l k
n

s s τα α+∆ − − =
=

= +∑ (4.5)

1 11.985 0.995n n n nx x x ξ+ −= − +
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In general, an AR model cannot be recommended in practical applications just because 

the error E(k) is minimised for large k. However, application to the EEG is a special 

case since the AR construction, being an all-pole model, reproduces the characteristics 

of the EEG exceptionally well and is suitable as a model for feature extraction and 

spectral estimation (PARDEY et al, 1996). Thus, the LL-GL allows us to reaffirm, with 

the added knowledge nonlinear time series analysis brings to bear, that the AR model 

is in fact optimum for these practical tasks.  

4.3 Testing for Nonlinearity in the EEG 

One might easily be forgiven for assuming that chaotic dynamics could underlie the 

EEG signal: the microscopic neuronal processes are themselves nonlinear, and chaotic 

solutions exhibit aperiodic activity with broadband spectra somewhat similar to that of 

the EEG. Indeed, many systems are composed of a huge number of internal 

microscopic degrees of freedom, but nevertheless produce signals which are found to 

be low dimensional (KANTZ and SCHREIBER, 1997). Nonlinear determinism is a 

necessary but not sufficient condition for chaos and thus detecting nonlinear 

determinism in the EEG is a prerequisite to discussions on chaotic dynamics. In this 

section we build on the preliminary investigations of CASDAGLI (1991) by applying 

the LL-GL technique to qualitatively different EEG data: eyes-closed relaxed state, 

Figure 4.7: LL-GL plot for x in (4.2) (solid) and for the AR(2) process 
(dashed). See text for details 



 98

deep sleep, and petit mal absence seizures. In addition, we calculate the correlation 

dimension and compare with surrogate data using a robust statistical framework 

(SCHREIBER and SCHMITZ, 2000), which affords us some ability to relate our LL-GL 

results with the literature. Our approach here is best described as exploratory – we 

wish to better understand the characteristics of the dynamics exhibited by the EEG. In 

Section 4.4 we will apply the same techniques to the stochastic limit cycle oscillator 

model for comparison.  

4.3.1 Surrogate Data and Statistical Comparison 

Investigating supposed nonlinearities in data by absolute values of invariant measures 

quickly leads to conclusions open for interpretation and difficult to relate to other 

studies (this is particularly evident in the early studies of nonlinear analysis of the 

EEG). What is required is a proper statistical framework to distinguish features of a 

series with a specified level of significance. For a detailed review on testing for 

nonlinearity with surrogate time series see SCHREIBER and SCHMITZ (2000). Suppose 

we have some measure λ obtained from a time series, which we want to probe for 

nonlinearity. We require a null hypothesis to test against. A convenient null hypothesis 

is that the data was produced from a Gaussian linear stochastic process. The null 

hypothesis can be formulated by stating that all structure to be found in the time series 

is fully described by the mean, variance, and auto-covariance. Indeed, Gaussian linear 

stochastic processes are fully described by their power spectrum (by the Wiener-

Khintchine relation), which does not contain any information pertaining to the 

direction of time. It is possible to obtain a randomised series with the same mean, 

variance, auto-covariance, and power spectrum by first taking the Fourier transform, 

randomising the phases, and subsequently taking the inverse Fourier transform. To test 

the null hypothesis, that is to accept or reject it, we must specify a level of 

significance. A significance level of p < 0.05 means that there is a 5% chance we 

reject the null hypothesis even though it is true – the test is then said to be valid at the 

95% significance level. The use of parametric statistical tests e.g. those assuming a 

normal distribution for λ is discouraged since many nonlinearity measures do not 

follow a normal distribution (SCHREIBER and SCHMITZ, 2000). Instead, a rank-order 

test is recommended (THEILER et al, 1992). We select a probability α of false rejection, 

corresponding to a significance level of (1 ) 100%α− × . For a one-sided test (e.g. the 

‘smallest value’), we generate 1 1M α= − surrogate series. Therefore, including the 
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series in question, we have a total of 1 α  series. The probability that one of these series 

has the smallest value is exactly α, as initially prescribed. For a two-sided test we need 

2 1M α= − surrogate series. Assuming a significance of 95%, this translates to 

requiring 19 surrogate series for a one-sided test and 39 surrogate series for a two-

sided test.  

4.3.2 Results 

The datasets in this section were investigated using the average mutual information 

and false nearest neighbours techniques as an initial guide to selecting delays and 

dimensions. Rather than be bound by these initial prescriptions, we follow the 

recommendation of HEGGER et al (1999) that what constitutes an optimal choice is 

largely dependent on the application (in this case prediction and dimension 

calculation). Filtering was performed using a 4th order FIR approach since IIR filters 

may introduce new dynamics and could confound results (ABARBANEL et al, 1993). 

Since endpoint mismatch results in artefacts in the Fourier transformation when 

creating surrogate data, subsets of data series were chosen such that the endpoints 

were matched in value and first derivative (SCHREIBER and SCHMITZ, 2000). For 

analysing correlation dimension, a one-sided test at the 95% level was performed (the 

null hypothesis may be rejected when the dimension of the original series is smaller 

than all the surrogates). Rather than extract a value for the dimension, we just plot the 

correlation sum. This way we avoid the dubious search and evaluation of a scaling 

region – a difficult task even for mathematically generated data (see Section 4.2.3.1). 

 

In the preceding sections, we have avoided the discussion of nonstationarity. Needless 

to say, the techniques presented here assume stationarity. In the analyses that follow, 

we have endeavoured to maintain stationarity of the data under study. EEG datasets 

are limited to a maximum of 10 seconds and selected for constancy of spectra (e.g. 

uniform alpha, delta, or spike-wave activity). 

4.3.2.1 EEG Data I (Eyes-Closed Relaxed State) 

EEG data was recorded from normal subjects seated upright in a relaxed, eyes-closed 

state. A single channel from the occipital area (Oz) was sampled at a rate of 100 Hz 

and filtered digitally 0.1 Hz to 30 Hz. Artefact free segments consisting of 10 seconds 

(N = 1000) of data were selected for analysis. Figure 4.8 (left) illustrates the LL-GL 
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plot over a range of dimensions. The dynamics in this case show little evidence of 

nonlinearity, being optimally described by an autoregressive model. The global model 

shows a 300% improvement in forecasting accuracy compared with nonlinear 

techniques. Indeed, in Figure 4.8 (right) the correlation sum of the original series 

(solid) is compared with 19 surrogates to reveal no statistically significant (p < 0.05) 

low dimensionality.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 illustrates similar results for another EEG dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Left: LL-GL plot for eye-closed EEG, dimensions m = 8, 9, 10, 11. Minimum error 
is achieved for embedding dimension 11. Right: correlation sum (solid) at m = 11 and for 19 
surrogates (dashed). A time delay of τ = 6 was used for embedding. Theiler window nm = 15 

Figure 4.9: Left: LL-GL plot for eye-closed EEG, dimensions m = 8, 9, 10, 11. Minimum error 
is achieved for embedding dimension 11. Right: correlation sum (solid) at m = 11 and for 19 
surrogates (dashed). A time delay of τ = 6 was used for embedding. Theiler window nm = 15 
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Our results here are not surprising, and in good agreement with CASDAGLI (1991), who 

applied the LL-GL technique in a preliminary example on the EEG. These findings are 

also in agreement with THEILER and RAPP (1996) who investigated the dimension of a 

large number of similar datasets, concluding that the null hypothesis could only be 

rejected in 106 of 1320 series tested (p < 0.025). However, this is more than the 

expected 33 so not all of the datasets can be regarded as linear Gaussian noise. 

Referring to Figure 4.8 (right), the distribution of the surrogates does appear to be 

biased towards increased slopes implying it is conceivable that the null hypothesis 

might be rejected for similar datasets. However, the LL-GL is less forgiving, 

displaying the signature of a linear stochastic process. The datasets for Figures 4.8 and 

4.9 display abundant alpha activity and hence are consistent with STAM et al (1999) 

who concluded that 98.75% of epochs studied containing alpha activity could not be 

distinguished from filtered noise (a nonlinear prediction statistic was used in this 

case).  

4.3.2.2 EEG Data II (Stage 4 Sleep) 

For this section, EEG data was recorded during sleep studies. A professionally trained 

electroencephalographer distinguished the stages. Two datasets marked as stage 4 

sleep (abundant delta activity occurring during deep sleep), each ~8 seconds long (N = 

4096) were analysed. The data was recorded from the C3 channel, sampled at a 

frequency of 500 Hz, and filtered from 0.1 to 30 Hz. Figure 4.10 (left) illustrates the 

LL-GL plot over a range of dimensions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10: Left: LL-GL plot for stage 4 sleep, dimensions m = 8, 9, 10, 11. Minimum error is 
achieved for embedding dimension 8. Right: correlation sum (solid) at m = 8 and for 19 

surrogates (dashed). A time delay of τ = 30 was used for embedding. Theiler window nm = 200
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It is slightly more difficult to draw solid conclusions here - one may argue that a small 

improvement in prediction accuracy is seen for a smaller neighbourhood size. The 

improvement is very slight and the data is interpreted here as demonstrating stochastic 

behaviour as opposed to high dimensional dynamics. Referring to Figure 4.10 (right) 

the null hypothesis cannot be rejected in this case. Figure 4.11 tells a similar story for 

a dataset from another subject. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3.2.3 EEG Data III (Petit Mal Absence Seizure) 

The petit mal absence seizure can occur mainly in children older than 4 years, with a 

declining incidence throughout adolescence. Usually, an attack consists of a sudden 

lapse of consciousness and impairment of mental functions with typical durations 

between 5 and 20 seconds (NIEDERMEYER and LOPES DA SILVA, 1999). In this section 

we analyse ~8 seconds of ictal (seizure) activity sampled at 500 Hz (N = 4096 

samples) from the frontal regions (F8 and F3 respectively). Data was filtered from 

0.16 Hz to 30 Hz. The LL-GL plot in Figure 4.12 (left) exhibits a clear deterministic 

signature. In particular, the locally linear (globally nonlinear) model exhibits a ~200% 

improvement in prediction over a globally linear AR model. The correlation sum is 

illustrated in Figure 4.12 (right) along with 19 surrogates. The original time series 

exhibits a larger correlation integral than all of the surrogates and we reject the null 

hypothesis (p < 0.05). Figure 4.11 illustrates similar results for the same ictal seizure 

from channel F3. 

Figure 4.11: Left: LL-GL plot for stage 4 sleep, dimensions m = 8, 9, 10, 11. Minimum error is 
achieved for embedding dimension 9. Right: correlation sum (solid) at m = 9 and for 19 

surrogates (dashed). A time delay of τ = 30 was used for embedding. Theiler window nm = 200
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The ictal EEG of the petit mal absence is characterised by general synchronous 3 Hz 

spike-wave discharge that when observed visually and in reconstructed phase space, 

suggests deterministic dynamics. Our results for dimension estimation are consistent 

with PIJN et al (1991) who were able to differentiate rat epileptic datasets from their 

phase-randomised surrogates. Similarly, VAN PUTTEN and STAM (2001) concluded that 

the interictal EEG activity seen in West syndrome could not be described accurately 

by a Gaussian linear stochastic process. CASDAGLI et al (1997) found statistically 

significant nonlinearities in invasive EEG recordings from patients with temporal lope 

epilepsy.  Our application of the LL-GL reinforces these findings – in fact the 

Figure 4.12: Left: LL-GL plot for seizure data, dimensions m = 8, 9, 10, 11. Minimum error is
achieved for embedding dimension 9. Right: correlation sum (solid) at m = 9 and for 19 

surrogates (dashed). A time delay of τ = 30 was used for embedding.  
Theiler window nm = 300 

Figure 4.13: Left: LL-GL plot for seizure data, dimensions m = 8, 9, 10, 11. Minimum error is
achieved for embedding dimension 9. Right: correlation sum (solid) at m = 10 and for 19 

surrogates (dashed). A time delay of τ = 30 was used for embedding.  
Theiler window nm = 300 
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prediction error characteristics in Figures 4.12 and 4.13 are quite similar to a 

mathematical model of chaos in Figure 4.7. However, based on the data we may only 

conclude significant evidence for nonlinearity. Indeed HERNÁNDEZ et al (1996) 

concluded that petit mal data is likely to be a form of stochastic disturbed limit cycle 

behaviour rather than chaos. In Section 4.6 we show that nonlinearity demonstrated in 

the nonlinear time series techniques does not necessarily imply dynamical 

nonlinearity. 

4.4 Analysis of a Stochastic Limit Cycle Model of the EEG 

Armed with the experience of applying nonlinear time series analysis techniques to 

both mathematically generated data and actual EEG data, we perform the same 

analysis on the stochastic limit cycle model of the EEG introduced in Chapter III. The 

data used to produce Figures 3.12 and 3.13 are employed again here (N = 4096 

samples). Previously, we compared traditional statistics of the model with EEG from 

the eyes-closed relaxed state (same data that produced Figures 4.8 and 4.9 in this 

chapter) including power spectra and amplitude histograms. Here, we are interested in 

how the nonlinearity of the model manifests itself under the microscope of nonlinear 

time series analysis. Methods of time series analysis are optimised for either stochastic 

or deterministic data (KANTZ and SCHREIBER, 1997). They do not take into account 

that noise can actually interact with the dynamics, as is clearly the case for the 

stochastic limit cycle oscillator model of the EEG. The LL-GL approach goes some 

way to bridging the gap between deterministic and stochastic analysis and hence 

explains our motivation for employing it in this chapter. Figure 4.14 (left) illustrates 

the LL-GL plot over a range of dimensions. The results here are remarkably similar to 

those obtained from actual EEG data in Figures 4.8 – 4.11, with the data being 

optimally described by an autoregressive model instead of a nonlinear model. The 

correlation sum is illustrated in Figure 4.14 (right) for the original series (solid) and 19 

surrogates. Similar to the results for actual EEG data from the eyes-closed and deep 

sleep states, we cannot reject the null hypothesis at the 95% level. Notably, however, 

the stochastic limit cycle oscillator model in its current form does not account for the 

nonlinearity evident in pathological EEG data (as illustrated in Figures 4.12 and 4.13). 

While this suggests more research is required to investigate under what conditions the 

model exhibits increased nonlinearity in its simulated data, we show in Section 4.6 
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that it is possible that the introduction of a simple static nonlinearity (as might occur in 

a static measurement function) can account for the appearance of nonlinear dynamics.  

 

 

  

 

 

 

 

 

 

 

 

 

4.5 Implications for Modelling the EEG in Practice 

It is very interesting that despite the fact that nonlinear dynamics underpin the 

stochastic limit cycle oscillator model, no evidence for nonlinearity is revealed by the 

nonlinear time series techniques (Figure 4.14). This situation is reflected in actual 

(non-pathological) EEG data also, where the mechanisms producing the EEG data are 

almost certainly nonlinear. SCHREIBER (1999) makes the point: “…whether the 

observed irregularity is due to an intrinsic instability, the large number of neurons, or 

noise, may not be decidable based on time series data alone”. Choosing a technique for 

practical applications therefore, should be justified by the data itself. With the possible 

exception of pathological EEG data, this chapter suggests that nonlinear time series 

analysis might not appear to provide any benefit over traditional techniques as little 

evidence of nonlinearity is present in the data itself. Indeed, BILNOWSKA and 

MALINOWSKI (1991) concluded that the goodness of prediction via the method of 

SUGHARA and MAY (1990) (a variation of the zeroth order approximation technique – 

see Section 4.2.4) gave no benefit over the traditional AR approach. The application of 

the LL-GL technique in this chapter confirms these authors’ findings. Based on these 

conclusions, Chapter VI builds on the AR model for feature extraction for practical 

applications involving direct brain interfacing using the EEG.  

Figure 4.14: Left: LL-GL plot for the stochastic limit cycle model of the EEG, dimensions m
= 8, 9, 10, 11. Minimum error is achieved for embedding dimension 10. Right: correlation 
sum (solid) at m = 10 and for 19 surrogates (dashed). A time delay of τ = 27 was used for 

embedding (after downsampling by 4). Theiler window nm = 100 
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Given its lack of displayed nonlinear characteristics, one might be forgiven for 

concluding that nonlinear time series techniques are not applicable to the EEG. 

Furthermore, much of the research in the last decade or two with regard to application 

of these techniques to the EEG might appear to have been in vain. We have shown that 

pathological data differs significantly from non-pathological data by the increased 

presence of nonlinearity thus suggesting applicability of nonlinear time series 

techniques in practice for this kind of data. Recently, LEHNERTZ and ELGER (1998) 

interpreted the correlation dimension as an ‘operational definition’ and showed its 

ability to predict epileptic seizures several minutes prior to the event. In the final 

section of this chapter we show that nonlinear time series analysis may be applicable 

to stochastic data subjected to a static, nonlinear measurement function. 

 

4.6 Stochastic Dynamics and Nonlinear Time Series Analysis 
The LL-GL and correlation dimension techniques applied to petit mal absence seizure 

data suggest strong nonlinearity in the data. In this section, we show that time series 

techniques may correctly identify nonlinearity in the data but that it might be non-

dynamical nonlinearity that is being detected. KANTZ (2001) recently demonstrated an 

AR(2) process with a static nonlinearity was well suited to nonlinear time series 

prediction schemes. In this section we provide a similar presentation but using an 

alternative formulation – via stochastic differential equations, which are the basis of 

our model of the EEG signal. In addition, we briefly review some recent results, which 

facilitate one to extract stochastic differential equations from time series data. These 

results could be of particular interest to modelling of the EEG in the future. 

 

Consider the stochastic differential system 

 

 

where 0a > . The solution to (4.7a) is called the Ornstein-Uhlenbeck process 

(ØKSENDAL, 1998). We can show that the discrete time approximation to (4.7b) is an 

AR(2) process. Consider a time discretisation with 0 10 ... ...n N Tτ τ τ τ= < < < < < =  and 

t T N∆ = . We may write the Euler-Maruyama approximation for (4.7a) as 

( )1 11 1 1n n n n n
X X aX t b W Wτ τ+ +

= − ∆ + −  

 

1 1

2 1

dX aX dt bdW
dX X dt

= − +
= (4.7b)

(4.7a)
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Similarly, for (4.7b) we write 

12 2
1

n n

n

X X
X

t
−

−
=

∆
 

Inserting this into the previous equation and replacing the Wiener process by its white 

noise equivalent, yields the AR(2) process 

1 1

2 3
2 2 2(2 ) (1 ) , (0, )

n n n
X a t X a t X N b tξ ξ

+ −
= − ∆ − − ∆ + ∈ ∆  

Consider a static, nonlinear measurement function 

 

 

Figure 4.15 illustrates the effect of (4.8) on Euler-Maruyama (see Chapter III) solution 

of (4.7a) and (4.7b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 illustrates the LL-GL plot for (4.8). The plot reveals that a simple 

stochastic process (here the integral of the Ornstein-Uhlenbeck process) measured 

through a static nonlinear function is better modelled via a locally linear (globally 

nonlinear) scheme than an autoregressive process (actually, if the static nonlinearity 

was known one could invert it and subsequently apply an AR model). KANTZ (2001) 

puts forward an interesting explanation for this. Consider the generalisation of a 

dynamical system to a Markov process where the transition rules are defined by a set 

of transition probabilities. A Markov process is one where its future transition is 

dependent only on its current state (or more generally, for a Markov model of order m, 

the transition probability depends on the last m states). A deterministic dynamic 

2 2( ) sgn( ( )) ( )Y t X t X t= (4.8)

Figure 4.15: Euler-Maruyama solution of (4.7a) and (4.7b) where a = 2, b = 1 subject
to (4.8). Simulation parameters: 0.01t∆ = , T = 2000. Scaled to unit sampling 
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system may be considered a limit of a Markov process where the transition probability 

is δ-peaked. In the stochastic setting, for a dimension m reconstruction, the locally 

constant prediction strategy 1 1ˆ
n

n js S+ + Γ
= (see Section 4.2.4) may be considered to be 

the mean of the conditional probability 1 1 1( | , ,..., )j j j j mp s s s s+ − − +  integrated over the 

neighbourhood nΓ . For certain probability distributions, the prediction error might be 

minimised by the mean. Adding a static nonlinear measurement function to the 

stochastic limit cycle oscillator suggests one way of accounting for increased 

nonlinearity seen in pathological data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We conclude this chapter by mentioning the recent results of SIEGERT et al (1998) and 

GRADISEK et al  (2000) for determining the drift and diffusion terms from data with an 

underlying stochastic differential equation. Consider the (for simplicity 1-dimensional) 

stochastic differential equation 
( , ) ( , ) ( )dX a t X dt b t X dW t= +  

The family of solutions are called an Itô diffusion (subject to the sensible constraints of 

Theorem 3.1) and are homogenous (in time) Markov processes. For sufficiently 

smooth a and b, the transition probabilities of such a Markov processes have a density 

p = p(s, x; t, y) satisfying the Fokker-Planck equation 

2
2

1( ) ( ) 0
2

p ap b p
t y y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 

Figure 4.16: LL-GL plot for a stochastic process subject to a  static nonlinearity (4.8) 
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The probability density p may be estimated by constructing a histogram from the data 

itself. Moreover, the drift (a) and diffusion (b) terms may be estimated from their 

statistical definitions 

( )

( )( )
0

22

0

1( , ) lim ( ) ( ) | ( )

1( , ) lim ( ) ( ) | ( )

a t x E X t X t X t x

b t x E X t X t X t x

τ

τ

τ
τ

τ
τ

→

→

= + − =

= + − =
 

The conditional expectations may be evaluated by numerically integrating over the 

transition probability density p. Thus, it is possible to estimate the drift and diffusion 

contributions and hence the stochastic differential equation underlying the dynamics. 

This may be seen as the stochastic counterpart to modelling the global deterministic 

dynamics discussed in Section 4.2.4. The motivation here is the same though, namely 

to create a concise model of the underlying dynamics for use in practical applications 

(for example feature extraction in pattern recognition applications).  

4.7 Summary 

The primary goal of this chapter was to provide further support for the stochastic limit 

cycle model of the EEG (see Chapter III) by invoking techniques from nonlinear time 

series analysis. A secondary goal was to compare and contrast qualitatively different 

EEG data from a dynamical perspective. Nonlinear time series prediction, a robust 

indication of determinism, was employed to compare real and model data. Data 

generated from the model produces an identical dynamical signature to that of non-

pathological EEG data. Furthermore, for both model and non-pathological real data, 

and using the correlation sum, the null hypothesis that the data was produced from a 

Gaussian linear stochastic process could not be rejected at the 95% level. In contrast, 

epochs of pathological data (arising from a petit mal seizure) were shown to be 

significantly nonlinear and this suggests further work to investigate how the stochastic 

limit cycle oscillator model might produce increased nonlinearity in its data - a 

tentative suggestion of a static nonlinear measurement function was put forward as one 

possibility. Another possibility might be to weakly couple the oscillators or narrow the 

state transition probability distribution (equivalent to reducing the noise intensity). 

 

In the next chapter, we study more complex dynamical systems involving coupled 

oscillators for modelling evoked potentials – an important feature of the EEG with 

application to direct brain interfacing.  
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CHAPTER V 

EVOKED POTENTIALS MODELLING WITH  

COUPLED OSCILLATORS 
 

5.1 Introduction 
In this chapter we explore an important phenomenon that occurs ubiquitously in 

populations of biological oscillators, that of synchronisation. Mutual synchronisation 

can occur in populations of cells ranging, for example, from cardiac pacemaker cells 

(JALIFE, 1984) to circadian pacemaker cells (WINFREE, 1967; WINFREE, 1980) to 

neurons in the hippocampus (TRAUB et al, 1989). Our interest in synchronisation arises 

as a possible mechanism underlying evoked potentials and event-related potentials in 

the EEG. Evoked potentials are the electric responses of the nervous system to motor 

or sensory stimulation. They may be easily elicited by visual, auditory, or 

somatosensory stimuli (MISULIS, 1994). Event-related potentials are similar to evoked 

potentials in response magnitude and morphology except they are usually defined as 

endogenous potentials, resulting from cognitive or initiative processes. Both evoked 

and event-related potentials have found application in direct brain interfacing – see 

Chapter VI for more details. 

 

The generators of evoked and event-related potentials are typically regarded as the 

spatial and temporal summation of Excitatory Postsynaptic Potentials (EPSP) and 

Inhibitory Postsynaptic Potentials (IPSP), with the possible contribution of action 

potentials from sub-cortical generators (MISULIS, 1994).  However, very little is 

known about the temporal dynamics responsible for the generation of these potentials. 

This might be due at least in part by the fact that there is no generally accepted model 

of the EEG. Typically, models interpret the EP as an impulse response of an under 

damped oscillatory system, where the oscillatory system is intended to be a model of 

the ongoing EEG. WILSON and COWAN (1972) suggest parameters for their model of 

tightly coupled excitatory and inhibitory neurons to admit marginally stable damped 

response behaviour as a basis for evoked potentials. PROTOPAPAS et al (1999) model 

an evoked potential as an impulse or “shock“ applied to a large-scale network of 

realistic neurons. JANSEN et al (1993) describe an evoked potential as a response to a 
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volley of activity impinging on a lumped model of the cortex by LOPES DA SILVA et al 

(1976) with an additional excitatory feedback loop, and later employing coupled 

lumped models (JANSEN and RIT, 1995). In the latter, the authors suggest a possible 

role for synchronicity in addition to damped sinusoidal response behaviour as the 

primary mechanisms underlying evoked potentials. Our approach here involves 

explicitly focusing on possible mechanisms underlying the generation of evoked 

potentials and may be collectively termed under the general heading of phase 

reordering. 

 

That synchronisation might underpin the generation of evoked potentials appears quite 

plausible. Synchronisation has been suggested as a mechanism to solve the so-called 

‘binding problem’ in the visual cortex – that is the problem of decoding a distributed 

representation of multiple objects in the visual field (MILNER, 1974; MALSBURG, 

1981). Neuronal coding for the same object might be bound together by synchronous 

firing and differentiated from other neural assemblies representing different objects by 

the absence of synchrony between them. This concept and the existence of synchrony 

in other parts of the cortex are supported by recent experimental evidence (ECKHORN, 

1994; KÖNIG and ENGEL, 1995; SINGER and GRAY, 1995).  

 

The key concept we wish to explore in this chapter is that afferent (sensory) 

stimulation naturally triggers synchronisation. We shall see that phase reordering 

including both phase resetting and synchronisation play important roles. We approach 

the process of modelling synchronisation on two scales. The first we call a 

microscopic scale, describing interactions between biologically realistic models of 

neurons. The second, a more abstract approach, is focused at the macroscopic level 

and deals with neural populations as the basic unit (BURKE and DE PAOR, 2002). We 

conclude the chapter by introducing the novel concept of stochastic synchronisation. 
 

5.1.1 A Survey of Models of Neural Synchronisation 

It is useful to review some of the methods used in the literature to model neural 

synchronisation to help put the work contained in this chapter into context. Study of 

neural synchronisation invariably leads to a description of coupled oscillators. Coupled 

oscillators are difficult to analyse, often leading to large numbers of intractable 

equations. This area of applied mathematics is still quite new and there are no standard 
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techniques available. A major simplification can be obtained using phase models 

(ERMENTROUT, 1981; ERMENTROUT and KOPELL, 1984; ERMENTROUT and KOPELL, 

1991), which reduces differential systems with asymptotically stable limit cycle 

behaviour to a one-dimensional system parameterised only by phase. Small 

perturbations can also be studied in the resultant phase equations by averaging 

(GUCKENHEIMER and HOLMES, 1983), as can stability of different types of coupling. A 

convenient representation of coupling terms can also be obtained in terms of phase 

response functions (KOPELL and ERMENTROUT, 1986), although these usually have to 

be determined numerically (see Section 5.2.1 for more details).  

 

To produce more realistic models of neural synchronisation, MIROLLO and STROGATZ 

(1990) have used the so-called integrate-and-fire model for neural spiking. These 

authors showed that globally excitatory interaction results in synchronization of zero 

phase lag. However, it is not true that excitatory coupling automatically leads to 

synchronisation. HANSEL et al (1995) differentiate ‘Type I’ and ‘Type II’ phase 

response functions. The former is positive over the whole cycle whereas Type II 

response curves are negative at the beginning and positive at the end of the cycle.  This 

suggests that excitatory coupling for Type I phase response functions cannot lead to 

stable synchronisation. On the other hand, fast enough excitation for Type II phase 

response curves can lead to synchronisation, as seen in MIROLLO and STROGATZ 

(1990). Interestingly, more comprehensive models of neurons such as the Hodgkin-

Huxley neuron (although not a general rule – see HANSEL et al (1995) for examples) 

possess a Type II phase response curve thus suggesting that excitatory coupling might 

result in synchronisation (we will make use of this in Section 5.2). ERMENTROUT 

(1996) made a connection between the two types of phase response function and the 

transition to oscillations. For Type I functions, oscillations can be sustained at 

arbitrarily low frequencies whereas for Type II phase response functions, oscillations 

are usually triggered through a Hopf bifurcation (GUCKENHEIMER and HOLMES, 1983). 

 

As one models larger networks, more complex behaviour can be seen. STURM and 

KÖNIG (2001) describe how both static noise (such as inhomogeneous distribution of 

parameters) and stochastic noise (small random fluctuations of the dynamic variables) 

can lead to the emergence of irregular, partially synchronised, and alternating states of 

synchrony in large networks. Higher levels of noise encourage clustering of synchrony 
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into smaller and smaller clusters, transcending into complete asynchrony. We will 

show in Section 5.5 that another phenomenon is also possible in coupled oscillators, 

that of synchronisation of irregular, stochastic behaviour between neighbouring 

oscillators. 

 

5.2 Microscopic Synchronisation: Networks of Neurons 
Computational neuroscience is concerned with understanding the information content 

of neural signals by modelling the nervous system at many different structural scales, 

including the biophysical, the circuit, and the systems levels (KOCH and SEGEV, 1998). 

In this section, we use techniques from computational neuroscience, by employing 

biological realistic compartment models of neurons in a small neural circuit to explore 

synchronisation. Before introducing the techniques and the model itself, it is useful to 

build intuition by first considering phase models. The latter can help illuminate some 

common phenomena observable in more complex systems of coupled oscillators in a 

mathematical tractable way. 

5.2.1 Phase Models  

Consider a biological oscillator modelled as a structurally stable dynamical system 

exhibiting an asymptotically stable limit cycle where the system is described by 

 

 

and x∈ Rn. Assuming the oscillator is on its steady state limit cycle at all times, we 

may make a dramatic simplification by describing the oscillator by a single state 

variable called the phase ( )tθ .We rescale θ  and use modular arithmetic so that it takes 

on values from 0 to 2π radians and parameterise θ  so that it flows uniformly around 

the limit cycle. In essence, we have replaced the limit cycle by a circular limit cycle 

that flows at a constant speed. Strictly speaking, the new limit cycle is topologically 

equivalent to the original but not conjugate (see Chapter II). This yields a simple 

equation for (5.1) 

 

whereω is the natural frequency of the oscillator and the solution of the equation is 

given by 

 

( )dx F x
dt

= (5.1)

d
dt
θ ω= (5.2)

( ) (0) (mod 2 )t tθ ω θ π= +
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The solution is constrained to always lie on the interval 0 2θ π≤ < . This simplification 

of using phase equations discards information pertaining to the original equations in 

exchange for making analysis of coupled oscillators mathematically tractable. For 

example, studying four coupled Hodgkin-Huxley model neurons would require sixteen 

nonlinear differential equations for the neuron somas alone if we were to use the 

original equations. Indeed, there are many situations where phase models are quite 

suited, for example when no model for the biological oscillator in question exists or 

when we wish to model an oscillator that generates an event at a certain phase. 

 

Consider N coupled biological oscillators given by their phase equation (5.2). The 

resultant coupled system exists on an N-dimensional torus TN. We may now write 

 

 

where hi represents the coupling effect of all other oscillators on oscillator i and α is 

the strength of coupling between oscillators. The coupling function hi, which depends 

only on relative phases, is chosen such that it is 2π-periodic in each of its arguments. 

This is necessary so that the flow is uniquely defined at each point on the torus TN. We 

may further describe the coupling function as being the sum of contributions between 

pairs of oscillators, i.e. 

 

 

where j represents the presynaptic oscillator and thus hij describes the effect of 

oscillator j on oscillator i.  

 

When ( )i j Oω ω α− = it can be shown (ERMENTROUT and KOPELL, 1984) via averaging 

theory that a coordinate change allows one to write 
2( , ) ( ) ( )ij i j ij j ih H Oα θ θ α θ θ α= − +  

and thus for weak coupling 1α we consider the functions in (5.4) to depend only on 

phase difference. This is known as diffusive or electrotonic coupling. For coupling far 

from the weak condition, results of this theory can still hold (KOPELL, 1988). Note that 

if (0) 0ijH = then in-phase synchronisation is permitted. ERMENTROUT and KOPELL 

(1991) have shown that for strong coupling the results of the averaging technique, 

namely employing diffusive coupling, can still be applicable under certain conditions. 

(5.4)1 2
1

( , ,..., ) ( , )
N

i N ij i j
j

h hθ θ θ θ θ
=

=∑

1 2( , ,..., )i
i i N

d
h

dt
θ

ω α θ θ θ= + (5.3)
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In particular, employing diffusive coupling was shown to be appropriate if the 

interaction effects (e.g. impulses imparted) are distributed around the cycle of the 

oscillator. An example where this might occur of relevance to this thesis can be given 

by considering a neural population coupled to a neighbouring neural population. Each 

population is composed of subunit oscillators (neurons). We assume strong coupling 

between subunit neighbours such that they are synchronised but not in-phase (this can 

be accomplished by assuming additional inhibitory coupling). Thus the pulse-coupled 

interaction of a neural population on its neighbour is distributed about the oscillator’s 

cycle. In addition, if one of the subunits is phase-shifted by a stimulus, it is assumed 

that the other subunits follow almost immediately. We use this result for selecting the 

form of the coupling terms in Section 5.3.  

 

An alternative type of coupling is called synaptic or chemical. Consider an oscillator 

subject to periodic forcing. If mθ is the phase just before the mth stimulus, we may write 

1 ( )m m mT Rθ θ ω θ+ = + +  

where ω is the natural frequency of the oscillator and T is the period of the forcing. R 

is called the phase response curve and gives the phase shift of the oscillator in 

response to a stimulus given at a particular phase (WINFREE, 1980). The phase 

response curve is obtained numerically by perturbing the oscillator and measuring the 

phase shift after the system relaxes back to its limit cycle. We may write the previous 

difference equation as a differential equation 

( mod ) ( )d t T R
dt
θ ω δ θ= +  

ERMENTROUT and KOPELL (1990) suggest it is reasonable (since real stimuli are not 

instantaneous) to replace the Dirac delta function with a distributed function P(t) that 

is sufficiently narrow to mimic the effects of coupling two oscillators by their phase 

response curves. Thus, the synaptic coupling term in (5.3) may be written as 

( , ) ( ) ( )ij i j j ih P Rθ θ θ θ= .  

 

5.2.1.1 Analysis of a Chain of Coupled Oscillators 

We present a simple example of a chain of coupled oscillators by RAND et al (1988). 

Here we employ diffusive coupling ( , ) ( )ij i j ij i jh Hθ θ θ θ= − . Since H is a periodic 

function, we may expand it in its Fourier series, and keeping only the odd component 
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of the first term in the expansion, yields ( , ) sin( )ij i j ij j iH aθ θ θ θ= − . Consider a chain of 

four oscillators with nearest neighbour coupling given by 

 

 

 

 

 

 

Now, by introducing the change of variables 

1i i iϕ θ θ += − , 

we may write the system in matrix form as 

d AS
dt
ϕ
= Ω+  

where 

1 1 1 2

2 2 2 3

3 3 3 4

sin
, sin ,

sin
S

ϕ ϕ ω ω
ϕ ϕ ϕ ω ω

ϕ ϕ ω ω

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = Ω = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

and 

2 1 0
1 2 1
0 1 2

A a
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

For phase locked behaviour we let 0d
dt
ϕ
= and thus 

 

No solution exists for (5.6) if any of the components of 1A− Ω  have an absolute value 

greater than 1. Now, assuming a constant frequency gradient across the chain, that is 

1i i cω ω +− = , 

we may write 

1
1
1

c
⎡ ⎤
⎢ ⎥Ω = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

and hence (5.6) becomes 

1

2

3

sin 3
sin 4

2
sin 3

c
a

ϕ
ϕ
ϕ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

1
1 2 1

2
2 3 2 1 2

3
3 4 3 2 3

4
4 3 4

sin( )

sin( ) sin( )

sin( ) sin( )

sin( )

d
a

dt
d

a a
dt

d
a a

dt
d

a
dt

θ
ω θ θ

θ
ω θ θ θ θ

θ
ω θ θ θ θ

θ
ω θ θ

= + −

= + − + −

= + − + −

= + − (5.5)

1S A−= − Ω (5.6)
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The hardest condition to meet (for a solution to exist) is for 2ϕ  and results in the 

following condition for 1:1 phase-locked motion 

 

 

Equation (5.7) tells us that for phase-locked motion to occur, there is a tradeoff 

between coupling strength (a) and frequency difference (c). This is quite an intuitive 

result, as oscillators closer in frequency require ‘less effort’ or coupling to bring them 

into synchronisation. An interesting aspect of diffusive coupling is that 

synchronisation in a chain invariably occurs with a phase lag between neighbour 

oscillators. Figure 5.1 illustrates the phase lags for different ratios of c a . 

 

 

 

 

 

 

 

 

 

 

 

 

Although the analysis here is very much oversimplified, this behaviour is 

characteristic of more complex systems of coupled oscillators. In order to maintain 

synchrony, coupling between oscillators must be sufficiently strong; weak coupling 

can only synchronise oscillators that are very close in natural frequency (ERMENTROUT 

and KOPELL, 1991). Indeed, this observation is the basis of the model for 

synchronisation in Section 5.2.3. 

5.2.2 Biologically Realistic Neurons 

Compartmental modelling is a powerful technique for constructing biologically 

realistic descriptions of neurons (KOCH and SEGEV, 1998; BOWER and BEEMAN, 

1998). The central concept behind compartmental modelling is that small sections of 

the neuron can be treated as isopotential elements so that the continuous structure of a 

1
2

c
a
≤ (5.7)

Figure 5.1: Plot of iϕ against i for different values of c a  
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neuron may be approximated by a collection of connected compartments. In particular, 

nonuniformity in physical properties such as diameter, resistances, and capacitance 

occur between compartments rather than within them thus facilitating different types 

of compartments (e.g. representing a soma, axon, or dendrite) to be coupled. Figure 

5.2 illustrates a pyramidal neuron with dendrites, soma, and axon, with a possible 

compartmentalisation. The dendrites form a tree-like structure and receive synaptic 

inputs from other neurons. Synaptically activated ion channels in the dendrites create 

postsynaptic potentials that we assume to be passively propagated to the pyramid 

shaped soma. The axon hillock is located near the base of the soma and contains a 

high concentration of voltage-activated channels that can create action potentials. The 

action potentials propagate along the axon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each compartment in Figure 5.2 is modelled with differential equations corresponding 

to an equivalent electrical circuit model; the entire neuron is modelled as a coupled 

system of differential equations, which itself may be coupled to other neurons. The 

number of compartments employed depends on what is being investigated. Studying a 

single neuron might suggest using a large number of compartments for detailed 

analysis, however modelling a large network might require (for computational 

efficiency) a much smaller number of compartments per neuron. There are also 

powerful techniques for reducing the number of compartments, for example replacing 

dendritic trees with equivalent cylinders is valid under certain conditions (the main 

one being that the sum of the daughter branches diameters raised to the power of 3/2 

Figure 5.2: Illustration of a pyramidal neuron (left) with a suggested 
compartmentalisation  (right) (BOWER and BEEMAN, 1998) 
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must equal the parent branch diameter raised to the power of 3/2 (KOCH and SEGEV, 

1998)). Finally, we should point out that much of the effort of practical computational 

neuroscience modelling is concerned with extracting sensible physical values for the 

compartments. Typically, intracellular injection of tracing substances and visualisation 

techniques are used to isolate and dimension individual neurons. Estimating electrical 

parameters is known as the ‘inverse estimation’ problem; the basic criterion used is to 

ensure that the model neuron exhibits the same steady-state input resistance as the 

actual cell and similar behaviour during transient perturbations (KOCH and SEGEV, 

1998). 

 

5.2.2.1 Membrane Models 

Figure 5.3 illustrates the equivalent circuit model for a patch of membrane.  

 

 

 

 

 

 

 

 

 

There are usually three types of conductance branch considered when modelling 

patches of membrane (although not all necessarily present): passive, synaptic, and 

active. The passive branch is the simplest. A number of passive ionic channels are 

lumped together to form a leakage current (primarily made up of a chloride current). 

This is modelled by a small reversal potential Em and the conductance gleak (the 

reversal potential is that value which results in no current flowing for the ion species 

in question and corresponds to the Nernst potential). In practice, we also lump the 

resting potential (usually between –40 and –100 mV) in the Em term also. Ohm’s law 

describes the current through the passive branch 
( )leak leak m mI g V E= −  

The membrane acts as a capacitor and hence is represented by Cm. Flow into and out of 

the compartment occurs passively through the axial conductances ga and ga’.  

Figure 5.3: Equivalent electrical circuit for an isopotential patch of membrane 
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Synaptic channels are typically activated by external chemical agents and are 

concentrated on the dendrites and soma. We will describe the time-dependent form of 

gsyn in the next section. Its contribution to the current is given by 
( )( )syn syn m synI g t V E= −   

where Esyn is the reversal potential for the ion species involved. Voltage dependent 

channels are represented by a voltage- and time-dependent conductance gact(t, V) and a 

reversal potential Eact. The contribution to the total current is given by 
( , )( )act act m m actI g t V V E= −  

We have already come across these kinds of channels in the Hodgkin-Huxley model 

described in Chapter I and will use them here in what follows. Finally, a single 

differential equation for a generalised compartment may be written as 

 

 

 

where Iinject corresponds to an externally applied current.  

 

5.2.2.2 Synapses and Axons 

Synaptic channels change their conductance when the appropriate chemical stimulus 

(neurotransmitter) binds to the receptor associated with these channels. Rather than 

deal with the complexity of the reaction kinetics, this is usually simply modelled by a 

voltage-independent but time-dependent function known as the alpha function (KOCH 

and SEGEV, 1998). The functional form is given by 

 

 

The function increases rapidly to a maximum of gmax at t = tp and subsequently 

decreases more slowly to zero. A more general function involving two exponentials is 

also possible. In practice, a postsynaptic potential is computed by convolving a train of 

impinging pulses (action potentials) with (5.8). While an axon may be modelled as a 

series of compartments, a common approach just involves modelling the axon as a 

simple delay line for the propagation of action potentials (BOWER and BEEMAN, 1998).  

5.2.3 Modelling Synchronisation in a Small Network of Neurons 

Our goal here is to demonstrate how afferent (sensory) stimulation naturally triggers 

synchronisation in a small network of biologically realistic neurons with excitatory 

( ) ( ) ( ) ( ) ( , )

( ) ( )

k k

m
m m m leak syn m syn act m act m

k

m m a m m a inject

dV
C E V g E V g t E V g t V

dt

V V g V V g I

= − + − + −

′ ′ ′′+ − + − +

∑
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p
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coupling. The phenomenon shown here, elucidated with the help of a microscopic 

model of synchronisation, might be considered as the basis for evoked potentials 

which occur as a result of sensory stimulation on a much larger scale in the brain. We 

use the GENESIS simulation package for modelling in this section (BOWER and 

BEEMAN, 1998). The scripts that define the model can be found in Appendix A4 and 

have been tested on GENESIS 2.2. 
 

5.2.3.1 Model Description 

The network consists of a circular chain of reciprocally, nearest neighbour connected 

excitatory neurons. We justify the use of excitatory coupling only on the basis of 

simplicity and the fact that the majority of the cortex (70-80%) consists of pyramidal 

cells, which themselves are excitatory (DEFELIPE and FARINAS, 1992). Figure 5.4 

illustrates the connections between oscillators employed in the model network. 

 

  

 

 

 

 

 

 

 

 

 

 

Each individual model neuron is composed of two compartments: a dendrite and a 

soma. The dendrite compartment consists of passive membrane with excitatory 

synapses employing the sodium reversal potential. The soma compartment consists of 

passive membrane with Hodgkin-Huxley type potassium and sodium ionic channels 

(see Chapter I). The axon is modelled as a simple delay line. We employ the same 

specific resistance and capacitances used in HODGKIN and HUXLEY (1952). Specific 

units enable one to specify parameters that are independent of cell dimensions. The 

specific membrane resistance RM has units Ω.m2. The specific membrane capacitance 

Figure 5.4: Connection topology for a small circuit of neurons. 
Flared endings on connections represent excitatory synapses 
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CM has units F/m2. The specific axial resistance RA of a cylindrical compartment is 

proportional to its length and inversely proportional to its cross-sectional area and has 

units Ω.m. For a compartment of length l and diameter d we have 

2
4

, ,M A
m m M a

R lR
R C ldC R

ld d
π

π π
= = =  

Table 5.1 summarises the simulation parameters.  
TABLE 5.1: SIMULATION PARAMETERS 

Parameter Description Value Units 
RM Specific membrane resistance 0.3333 Ω.m2 
CM Specific membrane capacitance 0.01 F/m2 
RA Specific axial resistance 0.3 Ω.m 
EM Resting potential + leakage reversal potential -0.07 + 0.0106 V 
ENa Sodium reversal potential 0.045 V 
EK Potassium reversal potential -0.082 V 

lsoma Length of soma (cylinder) 30 x 10-6 m 
dsoma Diameter of soma (cylinder) 30 x 10-6 m 

ldendrite Length of dendrite (cylinder) 100 x 10-6 m 
ddendrite Diameter of dendrite (cylinder) 2 x 10-6 m 

Esyn Reversal potential for synaptic ionic species 0.045 V 
gmax Maximum conductance of synapses 5 x 10-10 siemens 

tp Time to peak for postsynaptic potential 0.003 s 
α Synaptic weight  0.03 - 

∆axon Axon propagation delay 0.02 s 
Iinject1 Current injection to neuron 1 0.000222 x 10-6 V 
Iinject2 Current injection to neuron 2 0.00023 x 10-6 V 
Iinject3 Current injection to neuron 3 0.00024 x 10-6 V 
Iinject4 Current injection to neuron 4 0.00025 x 10-6 V 

 

Before explaining the basic principle underlying synchronisation in the model, we 

need to study how the period of an oscillating neuron varies with applied current. 

Figure 5.5 illustrates a plot of the reciprocal of the period versus applied somatic 

current for a single, uncoupled oscillator with parameter values described in Table 5.1.  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.5: Plot of frequency of oscillation versus injected current 
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As mentioned earlier, ERMENTROUT (1996) showed that Type II phase responses occur 

in models that obtain rhythmicity via a Hopf bifurcation (GUCKENHEIMER and 

HOLMES, 1983). The Hodgkin-Huxley is one such model. At a certain critical value for 

injected current, the asymptotically stable equilibrium resting potential becomes 

unstable and is surrounded by limit cycle oscillation as illustrated by Figure 5.5.  

 

As the injected current is increased two effects are noticeable. The first is an increase 

in frequency and the second is a saturation of the frequency. Since most neurons most 

of the time are just below threshold (FREEMAN, 1979), it is the lower part of Figure 5.5 

that is of interest. Indeed, (as already touched on in Chapter III) HOPPENSTEADT and 

IZHIKEVICH (1997) only consider neurons whose dynamics are at a bifurcation point to 

participate nontrivially in the brain processes.  We select the injected current values 

for the four oscillators (Table 5.1) so they are incommensurate and take on values on 

the near vertical leg of the frequency-current curve. The effect of a sudden, afferent 

increase in stimulation impinging on all the neurons increases the frequency of 

oscillation but also brings the frequencies closer together. Recall from the discussion 

in Section 5.2.1.1 that there is generally a tradeoff between coupling strength and 

frequency gradient. By first approximation, we can regard the decrease in frequency 

gradient occurring as a result of afferent stimulation as equivalent to an increase in 

coupling strength thus encouraging synchronisation. 

 

5.2.3.2 Simulation Results 

To demonstrate the effect of afferent stimulation, we apply a step increase in injected 

current of 0.001 µA to each neuron. Figure 5.6 illustrates the membrane potential of 

the four neurons. The step occurs at t = 0.25. Figure 5.7 illustrates an alternative 

visualisation using a raster plot where each dot corresponds to a firing event. The 

vertical lines correspond to the firing event of the first oscillator. Before the step 

increase in current, it is clear that the neurons are oscillating independently and 

drifting in phase relative to each other. After the step increase in current, the 

oscillators move closely into phase, increase in frequency, and maintain 

synchronisation for the duration of the applied current. 
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Figure 5.6: Plot of the membrane potential for four neurons.  A step increase in  
injected current occurs at t = 0.25 

Figure 5.7: Raster plot of firing events for four neurons.  A step increase in injected 
current results in synchronisation and increase frequency in the latter part of the plot. 

Vertical lines refer to timing of Neuron 1 to aid comparison  

Neuron 1

Neuron 2

Neuron 3

Neuron 4
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5.2.3.3 Discussion 

We have demonstrated a biologically plausible mechanism for synchronisation as a 

result of afferent stimulation. The basic principle is that frequency saturation in 

response to increased synaptic activity encourages synchronisation by bringing the 

oscillator frequencies closer together. Different frequency of oscillation in 

neighbouring neurons is to be expected as a result of the natural variation in synapse 

density, cell dimensions, and electrophysiological properties. Increased synaptic 

activity (assumed to occur in response to stimulation) was simulated as a step increase 

in current to the soma and is equivalent to a step increase of presynaptic activity. 

 

The demonstration of this stimulus-triggered mechanism for synchronisation appears 

to be new in the literature, yet intuitively simple. The phenomenon is suggested 

primarily as a possible mechanism underlying evoked potentials whereby a transient 

synchronisation of neural activity (in response to a visual, auditory, or somatosensory 

stimulus) produces an electrical response detectable in the background EEG. A closer 

look at Figures 5.6 and 5.7 reveals phase reordering comprising of two possible 

mechanisms. Firstly, the decrease in frequency gradient that occurs naturally serves to 

increase the strength of interaction between neighbouring oscillators and secondly, the 

step increase works to phase reset the oscillators and bring them into phase more 

quickly (we discuss phase resetting in more detail later in this chapter). The model and 

analysis here suggests a simple reason why synchronisation occurs ubiquitously in 

populations of neurons. 

 

5.3 Macroscopic Synchronisation: Neural Populations 
A key step in neuroscience modelling is the choice of scale. Since cortical columns of 

neurons share activity and are often regarded as the primary unit for behavioural 

processing (FREEMAN, 2000a), a more appropriate oscillator unit for modelling evoked 

potentials might be the neural population. To that end, we construct a new model of 

evoked potentials based on the transient synchronisation of coupled oscillators 

representing neural populations. We present the fundamental mechanism of the model 

next, namely that synchronisation of neural populations might occur due to dynamic 

changes in the coupling strength resulting from sensory stimulation with the coupling 

level also being influenced by cortical arousal level. Lyapunov stability theory, as with 
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previous chapters, provides a framework for constructing the model. The model is 

explored via numerical experiments. 

 

5.3.1 A Mechanism for Synchronisation 

It is well established that pools of neurons in local neighbourhoods tend to share 

activity thus leading to the concept of neural populations (see Chapter I for a review). 

Freeman's work (FREEMAN, 2000a; Chapter I) on the dynamical interactions of neural 

populations indicates the roles of two main state variables namely the dendritic current 

density over the population  (w) and axonal pulse density over the population (p). The 

w-p conversions occur at the trigger zones of the neurons and the p-w conversions 

occur at the synapses within the population; the product of dw/dp and dp/dw dictates 

the forward gain of a population. The slope dp/dw is dependent on 1) sensory 

excitation and 2) arousal level, and is the main determinant in the forward gain of the 

population (FREEMAN, 1979). Most neurons most of the time are just below threshold 

and thus an increase in afferent stimulation from the resting level p0 results in an 

effective increase in dp/dw - see Figure 5.8. In addition to being input-dependent, the 

dp/dw characteristic is also state-dependent, being influenced by arousal level. 

Notably, deep anaesthesia has the effect of diminishing the slope to zero (FREEMAN, 

1979). 

 

 

 

 

 

 

The basic unit of the proposed model is the neural population and is represented by a 

limit cycle oscillator. This approach has also been previously employed in WILSON 

and COWAN (1972) as an interpretation of oscillating populations and also in DEWAN 

(1964) to represent the periodic component of the EEG. The forward gain of the ith 

population to the jth population is given by the product of dwj/dpi and dpj/dwj and we 

interpret this as the coupling strength between oscillators representing neural 

populations. An evoked potential might thus be considered as being generated from a 

transient synchronization of the coupled oscillators resulting from an increase in 

coupling strength as a consequence of a brief afferent stimulus.  

Figure 5.8: Wave-pulse (w-p) relationship. Note that an 
increase in w from afferent stimulation or an increase in 

arousal results in an effective increase in slope dp/dw 



 127

5.3.2 Modelling Synchronisation 

We use the prescribed oscillator Method I (2.7) to create a simple limit cycle 

oscillator, reproduced here for convenience 

 

 

 

For simplicity, a circular contour given by 

 

is employed. The resultant oscillator produces an asymptotically stable circular limit 

cycle that is traversed with uniform speed. The oscillator may be regarded as 

topologically equivalent to an equivalent oscillator representing the aggregated field 

activity of a neural population. In other words, there exists a mapping h from the 

original state space to the system given by (2.7) and (5.9). To couple the oscillators, 

we introduce a term proportional to the phase difference between neighbouring 

oscillators. When the oscillators are 1:1 phase synchronized, this term reduces to zero.  

This is diffusive coupling and is justified on the basis of simplicity and the results of 

ERMENTROUT and KOPELL (1991) - the interaction effects for the equivalent neural 

population oscillator on its neighbours are distributed around the cycle of oscillator, 

and hence can be represented by diffusive coupling (see the discussion in Section 5.2.1 

for more details). 

 

To show that synchronisation can occur, we consider a pair of oscillators (x1,x2) and 

(x3,x4) where for simplicity we have assumed λ = 1. The two oscillators and the 

coupling constants α and β are given in (5.10) where we have introduced a term ωi to 

allow for frequency variation in the oscillators (this term is added by time scaling and 

noting that the term . iH H x∂ ∂  reduces to zero on the limit cycle).  

 

 

Introducing the coordinate system 

 

then for two oscillators and using (5.10) yields 
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where 1:1 synchronisation corresponds to the origin. We can investigate stability of 

the synchronised state by suggesting a candidate Lyapunov function 
2 2V p q= +  

Consider its time derivative, initially for identical frequency oscillators, 1 2ω ω= , 

 

 

 

Clearly, the third bracketed term in (5.12) is negative definite. The first two terms are 

also negative definite for sufficiently large values of the coupling α, β subject to the 

condition that xi is bounded. Thus, if (5.12) is negative definite, the origin of the (p, q) 

phase plane is asymptotically stable, and the two oscillators synchronise. It remains to 

show the bounded condition and this may be achieved by suggesting a new Lyapunov 

function for (5.12) for the case of two oscillators 
* 2 2 2 2

1 2 3 4V x x x x= + + +  

Its time derivative is given by 

( ) ( )
( ) ( )
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and is negative far from the origin and therefore all distant trajectories approach the 2-

torus at the origin and hence are bounded.  

 

Now, if the two oscillators under consideration have differing frequencies 1 2ω ω≠ , a 

new term is added to (5.12) 

 

This is a sign-indefinite term that violates Lyapunov’s stability criterion for small xi 

and results in limit cycle behaviour for (5.12) with a radius that decreases with 

increasing coupling and closer frequencies (converging to a stable equilibrium point 

for identical oscillators). This translates to a slight time lag in synchronization between 

neighbouring oscillators and does not pose any problems for our purposes as we may 

make the lag arbitrarily small by increasing the coupling strength. To model evoked 

potentials, we employ a chain of N coupled oscillators given by (5.10) where i = 1 … 

2N-1, r2 = 1, λ = 1. As a first approximation, we consider the brain and surrounding 
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structures as an infinite homogenous conductor, the contribution to the field potential 

in volts for each current source Ii in amperes is 

   

 

where σ is the brain tissue conductivity and Ri is the distance of the ith current source 

from the field point (PLONSEY and BARR, 1998). In our model, the output of each 

oscillator in the chain is taken to represent the generated extracellular current of a 

neural population. Considering the chain as uniform, all the coefficients Ri  are equal, 

Ri = R. Ignoring scaling constants the EEG can be modelled as a simple summation of 

the output of each oscillator. Finally, to simulate the unsynchronised background EEG, 

the set {wi} is chosen from a random Gaussian distribution N(1, 0.33). 

5.3.3 Exploring the Model I 

To explore the model, a custom application EPSync written in Java was created. Based 

on a fourth order, fixed step Runge-Kutta solver (PRESS et al, 1992), the application 

employs a graphical interface to configure the simulation parameters and (more 

uniquely) to specify the coupling time series to use. Figure 5.9 illustrates the class 

diagram. The source code can be found in Appendix A3 (CD-ROM). 

 

 

 

 

 

 

 

 

 

Each oscillator is modelled via the NeuralPop class, which interacts with other 

neighbour oscillators in an object-oriented fashion. The public method updateState() is 

called repetitively by the NeuralPopManager class to advance the solution.  The 

EPSyncConfig class wraps the GUI interface and instantiates the NeuralPopManager. 

Different oscillators can be used in place of NeuralPop and different network 

topologies may be specified within the BuildTopology() method in 

NeuralPopManager.  

1
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Figure 5.9: UML class diagram for EPSync
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Figure 5.10 illustrates the effect of a pulse in coupling strength on a pair of 

incommensurate coupled oscillators (ω1 = 1.0 and ω2 = 1.6). Following the increase in 

coupling strength, the oscillators become immediately synchronized and subsequently 

drift apart again when the coupling returns to zero. The oscillators synchronise at the 

average frequency of the uncoupled oscillators - a phenomenon that has been shown to 

occur for a chain of coupled phase oscillators (RAND et al, 1988). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To simulate an evoked potential, 50 oscillators with Gaussian distributed frequencies 

are subjected to a transient increase in coupling strength as a result of some sensory 

stimulus. Figure 5.11 illustrates the summated output of the first state variable of each 

oscillator, subject to a given coupling time series. The simulation models an evoked 

potential as the oscillators are briefly brought into phase and subsequently go out of 

phase due to their differing frequencies. During the interval of synchronicity, and 

triggered by sensory stimulation, the complexity of the system briefly reduces to 

simple limit cycle behaviour. That the complexity of the dynamics can simplify in our 

model under coupling is consistent with BAŞAR (1983). Başar argued that neural 

populations in the brain might be regarded as a large number of coupled oscillators 

and suggested that if n oscillators are left uncoupled, the resulting attractor will be an 

n-dimensional torus corresponding to n independent frequencies. If the oscillators are 

coupled, the dimension will be reduced, possibly resulting in simple limit cycle 

behaviour. 

Figure 5.10: A pair of oscillator undergoing transient 
synchronisation. Coupling (α,β) time series is shown at the bottom 
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5.3.4 Phase-locking the Response to the Stimulus 

The model proposed thus far exhibits one aspect of phase reordering, that of phase 

synchronisation. However, no phase-locking to the trigger is displayed. This is clearly 

demonstrated in real evoked potentials where there is a small variance in the latency of 

the evoked response with respect to the trigger (hence the origin of names such as 

P100 and N145, which refer to positive and negative evoked response peaks that occur 

at 100 ms and 145 ms after a stimulus respectively). Indeed, averaging over many 

trials is the principal technique used in clinical practice for recovering the evoked 

potential from the background (much larger) EEG signal (MISULIS, 1994). To model 

phase-locking to the trigger, it is necessary to include a mechanism for phase resetting 

the oscillators. We proceed by first studying phase resetting for the oscillators given 

by (2.7) and (5.9) but with a change of coordinates. Our approach here is based on a 

modified version of MURRAY (1990). We will show that by adding a stimulus 

component corresponding to a volley of afferent activity impinging on each oscillator, 

the evoked response is phase-locked to the stimulus. 

 

We transform (2.7) with (5.9) to polar coordinates by specifying the transform 

 

 

where ( )2 2
1 2r x x= + . This yields  

Figure 5.11: Summated output of 50 oscillators with Gaussian 
distributed frequencies N(1, 0.33) undergoing transient 
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The steady-state solution of (5.13) is given by 

 

We wish to study the change in phase of (5.13) subject to a stimulus. A convenient 

graphical tool is the phase transition curve (PTC), which gives the new phase versus 

the old phase subject to a stimulus of a given magnitude applied at the old phase 

(WINFREE, 1980). Figure 5.12 illustrates (5.13) subject to an instantaneous (without 

loss of generality) horizontal stimulus of magnitude I. The effect of the stimulus is to 

displace the trajectory horizontally to the left from P to Q resulting in a new phase 

angle φ . Noting that 

cos cos
sin sin

m I
m

φ θ
φ θ
= −
=

 

we can write the new phase angle in terms of the old angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differentiating (5.14) with respect to θ  yields 

 

 

Now, for 1I < , we can see from (5.15) that 0d dφ θ > always and thus the new 

phase is always delayed with respect to the old phase. Figure 5.13 illustrates a PTC for 
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Figure 5.12: Impulse applied to (5.14) with 1I <  
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I = 0.5. The average slope is equal to 1 and hence is called a Type 1 phase resetting 

curve (WINFREE, 1980). Note that any value of φ  is attainable for a range of values of 

θ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now consider the case for 1I > . According to (5.15) d dφ θ  can now take on 

negative values. Figure 5.14 illustrates a phase plot.  

  

 

 

 

 

 

 

 

 

 

 

 

The effect of the stimulus on the oscillator is to always move the state into the left 

hand plane. This is reflected in the PTC where the new phase is clearly constrained to 

Figure 5.13: Type I phase resetting (I = 0.5). Dashed line corresponds to φ θ=   

Figure 5.14: Impulse applied to (5.14) with 1I >  

θ
φ
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a subset of values as illustrated in Figure 5.15 for I = 1.5. This is known as Type 0 

phase resetting since the average slope of the curve is 0 (WINFREE, 1980).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can make use of Type 0 phase for a sufficiently large stimulus ( 1I > ) to achieve 

phase-locking to the trigger. Subjecting a large number of uncoupled oscillators with 

(initially) uniformly distributed random phases to a stimulus ( 1I > ) results in a 

distribution of new phases about a mean value as illustrated by the dotted horizontal 

line in Figure 5.15. By including a subsequent phase synchronisation effect, the 

oscillator phases are ‘pulled together’ causing the standard deviation of the new phases 

about the mean to reduce to zero. The end result is that the synchronised oscillators are 

phase locked to the stimulus trigger. In other words, we have now introduced a phase 

reordering effect comprised of both phase resetting and phase synchronisation. The 

additional phase resetting mechanism also serves to bring the oscillators into 

synchronisation faster than with just the synchronisation effect alone. We extend the 

oscillators (5.10) used in the macroscopic model of evoked potentials by adding a brief 

stimulus to the first state variable corresponding to a volley of afferent activity. Since 

real stimuli are not instantaneous, we model the stimulus pulse as a distribution given 

by 

 

Figure 5.15: Type 0 phase resetting (I = 1.5). Dashed line corresponds to φ θ=   

2

( ) exp tI t a
b
τ⎛ ⎞−⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(5.16)
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Figure 5.16 illustrates a plot of equation (5.16). 

 

  

 

 

 

 

 

 

 

 

5.3.5 Exploring the Model II 

5.3.5.1 Ensemble Averaging 

We repeat the numerical experiment of subjecting 50 oscillators with Gaussian 

distributed frequencies to a transient increase in coupling strength but this time with 

the simultaneous addition of a phase resetting impulse to each oscillator and ensemble 

averaging over 10 responses with random initial conditions for each oscillator. Figure 

5.17 illustrates the summated output of the first state variable of each oscillator (top) 

with the coupling strength waveform (middle) and stimulus imparted (bottom). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Plot of (5.16) for a = 1.5, b = 1, τ = 50 

Figure 5.17: Ensemble average over 10 evoked responses (top) subject to a change in 
coupling strength (middle) and stimulus (bottom) 
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From Figure 5.17 two obvious effects as a result of the introduction of the stimulus 

can be observed. The first is the oscillators synchronise faster than before (compare 

with Figure 5.11) and we have been able to reduce the width of the coupling pulse 

required to synchronise the oscillators. Secondly, the evoked response is now 

preserved during averaging, i.e. the response is phase-locked to the trigger. 

5.3.5.2 Arousal Level Effects 

In Section 5.3.1 we described how the strength of coupling is also dependent on the 

level of arousal. Application of anaesthetics can reduce the level of arousal and 

changes in auditory and visual evoked potentials have been used in methods for 

detecting depth of anaesthesia (NOGAWA, 1991). In general, lowering of the arousal 

level is seen to increase the latency and often reduce the amplitude of auditory and 

visual evoked potentials for many anaesthetics (THORNTON 1991; NOGAWA 1991). We 

can model this phenomenon by reducing the coupling strength to correspond to the 

low arousal occurring during anaesthesia.  The stimulus received by all oscillators is 

also expected to be reduced significantly as the strength of the synapses is dramatically 

decreased by the application of anaesthetics (FREEMAN, 1979). We note from the PTC 

for a weak stimulus 1I < , the effect is to delay some oscillators and advance others 

by a small amount. On average the slope is 1, and measured across a large number of 

initially unsynchronised oscillators, the net change in phases is zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.18: Latency increase and amplitude decrease for lower 
coupling and stimulus (single-trial, 50 oscillators). Coupling and
stimulus as per Figure 5.17 (solid) and as a result of a decrease 

by a factor of 5 (dashed)
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The proposed model suggests that the lowering in arousal (coupling and stimulus 

strength) will result in latency in the evoked response peak by virtue of the fact that it 

will take longer for the oscillators to arrive at a synchronized state (the phase resetting 

component has no net effect). In addition, since the oscillators will not synchronize as 

tightly, a lower amplitude response will result. Figure 5.18 illustrates the onset of 

synchronisation for the original stimulus and coupling strength, and for a decrease in 

stimulus and coupling by a factor of 5. 

5.3.5.3 Desynchronisation Waveform 

REILLY et al (1996) demonstrated that the result of resetting all the phases of n 

uncoupled sinusoidal oscillators resulted in the summated output of 

       

 

where n is the number of oscillators, σ is the standard deviation and µ is the mean of a 

Gaussian distribution of frequencies. It turns out that this equation is a scaled version 

of the Morlet wavelet.  The output of the first state variable of the oscillators described 

by (2.7) and (5.9) can be described by a simple sinusoidal function and thus the 

summated desynchronisation of a large number of oscillators should also approximate 

the Morlet function. Figure 5.19 illustrates a repeat of Figure 5.17 where the time axis 

starts at the instant the coupling falls to zero and thus the oscillators are drifting apart 

at this point. Superimposed (dashed) is a scaled version of (5.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.19: Response of 50 oscillators desynchronising at t = 0 

(solid). Suitably scaled Morlet wavelet (dashed) 
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DEMIRALP et al (1998) demonstrated the usefulness of the Prony method in the 

analysis of similar potentials. This method adaptively fits damped sinusoids to data 

and performs better than Fourier analysis for signals that are transient by nature. 

Another alternative technique might be to use wavelets to perform a multi-resolution 

decomposition. Wavelet theory, in general, does not provide a method for selecting a 

suitable basis function for a given data set, and is usually done by trial and error 

against a library of wavelets (MC DARBY, 2000). Our model seems to suggest a 

possible choice for an optimum wavelet for evoked potential decomposition. 

 

5.4 Stochastic Synchronisation 
The proposed model in the preceding section for evoked potential generation based on 

the transient synchronisation of coupled oscillators assumes a deterministic system for 

the oscillators in question. In Chapter III, we introduced a model of the EEG based on 

stochastic limit cycle oscillators to capture the aperiodic variability seen in the actual 

EEG. It is interesting to consider employing stochastic oscillators to represent the 

activity of a neural population in an effort to model the variability of activity in real 

populations. The question naturally arises as to whether stochastic oscillators can 

synchronise and appears new. PECORA and CARROLL (1990) observed that certain 

subsystems of nonlinear chaotic subsystems can be made to synchronise and has 

spurred great interest in the application of chaos in communication systems 

(KOLUMBÁN et al, 1997; KOLUMBÁN et al, 1998). We conclude this chapter with a 

brief demonstration study of two coupled stochastic limit cycle oscillators of identical 

frequency. We show that synchronisation is indeed possible. 

 

Consider the stochastic ellipse limit cycle oscillator (using (3.20)) written here for two 

coupled oscillators 
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and 
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where we have introduced coupling terms α and β similar to the approach used in 

Section 5.3.2. Figure 5.20 illustrates the first state variable for the two uncoupled 

oscillators (obtained by setting the coupling terms to 0).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 illustrates the effect for 0.5α β= =  using the same Wiener process 

realisation for comparison.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Plot of the first state variable for two uncoupled stochastic 
limit cycle oscillators with differing initial conditions.  Simulation 

parameters: Runge-Kutta, a = b = 1, λ=0.01, σ=4, 0.005t∆ = , T = 150 

Figure 5.21: Plot of the first state variable for two coupled stochastic 
limit cycle oscillators ( 0.5)α β= = with differing initial conditions. 

Simulation parameters: Runge-Kutta, a = b = 1, λ=0.01, σ=4, 
0.005t∆ = , T = 150 
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Even for small values for the coupling terms, the oscillators synchronise both phase 

and amplitude immediately. The model for evoked potentials presented in the previous 

section could be extended to include stochastic dynamics. The introduction of 

stochastic effects would enable variability in amplitude and latency of the response to 

be modelled similar to that demonstrated with the stochastic Wilson-Cowan model in 

Section 3.7.3. 

 

5.5 Summary 
The key concept explored in this chapter is that afferent (sensory) stimulation naturally 

triggers synchronisation at both the microscopic (neuron) and macroscopic (neural 

population) levels. A small network of biologically realistic neurons with realistic 

synaptic coupling demonstrates the concept at the microscopic level. Coupled 

oscillators of the form introduced in Chapter II serves as the basic unit of the 

macroscopic model. Both phase resetting and phase synchronisation were shown to 

play important roles in the generation of evoked potentials with the (macroscopic) 

model capable of predicting anaesthesia related latency in evoked potentials. The 

suitability of the Morelet wavelet in analysis was also discussed. The chapter was 

concluded with a novel demonstration of how stochastic limit cycle oscillators can 

synchronise. Given the ubiquity of noise and synchronisation in the nervous system, 

this phenomenon appears quite likely to be important in brain processes. 

 

Evoked (or indeed event-related) potentials can be viewed as a deterministic 

component in an otherwise stochastic signal. We exploit this in Chapter VI, where we 

discuss practical applications by introducing some novel algorithms for use in human-

computer interfaces.  
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CHAPTER VI 

DIRECT BRAIN INTERFACE APPLICATIONS 

 

6.1 Introduction 
Influenced by work in the preceding chapters, in particular the characterisation of the 

EEG as a stochastic process, we now explore the more pragmatic concerns of 

biosignal processing encountered in creating Direct Brain Interface (DBI) systems. A 

DBI typically operates by harnessing signals arising from processes within the brain, 

without depending on the brain’s normal output pathways of peripheral nerves or 

muscles (WOLPAW et al, 2000). Whilst our main signal of interest in this chapter (and 

indeed thesis) is the EEG, the bigger picture of facilitating communication and control 

for people with severe physical disabilities should not be forgotten. To this end, we 

shall also briefly consider some alternatives to EEG-based DBIs. In fact, possessing a 

diversity of solutions at hand, with the most suitable solution fitted to the person’s 

needs and not vice versa, is the hallmark of effective Occupational Therapy (FLYNN, 

2001). 

 

Central to direct brain interfacing strategies are the signal processing tasks of feature 

extraction and statistical pattern recognition, which are the focus of this chapter. After 

reviewing the state-of-the-art in EEG-based DBIs, we introduce the concepts of 

statistical pattern recognition and parametric modelling. A left/right self-paced typing 

exercise is analysed by novel extension of the common AutoRegressive (AR) model 

for EEG feature extraction to an AutoRegressive with Exogenous input (ARX) model 

for combined filtering and feature extraction (BURKE et al, 2002). Using this 

technique, event-related and evoked potential based DBIs may be constructed, for 

example the P300 based DBI by FINUCANE et al (2003). As a sidebar, we consider an 

alternative communication paradigm relevant for severe physical disabilities based on 

eye-blink detection employing image processing (BURKE et al, 2001). The fMRI signal 

is also investigated using the ARX feature extraction method to facilitate single-trial 

extraction of haemodynamic activation information in the brain, a possible future 

strategy applicable in constructing noninvasive DBIs.  



 142

6.2 A Brief Survey of EEG-Based Direct Brain Interfaces 
The most common signal employed in DBIs is the non-invasive, scalp recorded EEG, 

which harnesses features originating from somatosensory, motor, or visual areas of the 

cortex (FARWELL and DONCHIN, 1988; WOLPAW et al, 1991; PFURTSCHELLER et al, 

1996; SUTTER, 1992; MIDDENDORF et al, 2000; BIRBAUMER et al, 1999). Complex 

digital signal processing and pattern recognition techniques are often employed to 

extract pertinent information from the measured signals in real-time and subsequently 

used to drive communication and control applications. When designing a DBI, in 

addition to the technical methodology of recording, feature extraction, and pattern 

recognition, the choice of EEG feature and elucidation paradigm is paramount. 

Broadly speaking, most EEG-based DBIs fall into one of four categories depending on 

the specific activity patterns of interest including:  

- oscillatory EEG components, 

- slow cortical potentials,  

- event-related potentials, 

- evoked potentials. 

A coarser categorisation may be made by noting that the former two refer to 

phenomena that require operant conditioning and/or behavioural modification to 

control. WOLPAW et al (1991) exploit behavioural modification of the 8-12 Hz mu1 

rhythm or 20-25 Hz central beta rhythm (both of which originate in the sensorimotor 

cortex) as a control signal for 1-dimensional and 2-dimensional cursor control. 

PFURTSCHELLER et al (1996) harness Event-Related Desynchronisation (ERD) and 

Event-Related Synchronisation (ERS) of the 8-12 Hz mu and central beta rhythms 

modified by imagined movements as control inputs for a DBI (contralateral ERD and 

subsequent ipsilateral ERS occur during and after preparation for movement 

respectively). BIRBAUMER et al (1999) have constructed a spelling device that trains 

locked-in patients to self-regulate slow cortical potentials in the EEG (although it takes 

several weeks to months to learn to operate satisfactorily). FARWELL and DONCHIN 

(1988) employ the P300 endogenous potential to facilitate users to select letters of the 

alphabet for communication. The P300 potential is elicited by subjects attending to a 

‘rare’ event in an oddball sequence of stimuli (in this case, the subject attends to a 

                                                           
1 The mu rhythm is the name given to the alpha-like rhythm located over the sensorimotor cortex. It is 
related to the usual alpha rhythm in frequency and amplitude but has a different physiological 
significance (NIEDERMEYER, 1999). 
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particular letter while other ‘odd’ letters are presented at random; the chosen letter is 

the rare event). Based on work by SUTTER (1992), MIDDENDORF et al (2000) created a 

simple DBI based on steady-state visual evoked potentials. Briefly, two icons flashing 

at different frequencies are presented on a computer screen. As the subject gazes at 

one icon (which may have a control or communication action associated with it), a 

visual evoked response at the stimulus frequency of the particular icon will ensue and 

thus one may determine which icon is being attended to by analysing the EEG signal. 

Notably, the signal evoked by the stimulus increases enormously the closer to the 

centre of the visual field it is located and is a direct result of the disproportionately 

large amount of visual cortex allocated to processing at the centre of our vision where 

acuity is greatest (SUTTER, 1992). 

6.3 Statistical Pattern Recognition 
Pattern recognition loosely refers to the concept of extracting meaning from data by 

the classification of information into a predefined set of classes. Familiar examples of 

pattern recognition include recognising faces, detecting familiar voices, and detecting 

smells, all of which are tasks that humans perform exceedingly well. Enabling 

machines to achieve comparable results is a challenge and the theoretical framework is 

based naturally on a probabilistic one, which reflects the fact that the information we 

wish to describe is usually described in a statistical sense and the results we seek are 

also often expressed in a statistical sense. In this section, we shall introduce sufficient 

pattern recognition material to present the results of this chapter; for a detailed 

introduction, the interested reader is referred to BISHOP (1995) and RIPLEY (1996). 

 

Figure 6.1 outlines the typical pattern recognition approach consisting of two stages, 

namely a feature extraction stage and a classification stage.  

 

 

 

 

 

The former usually results in a transformation of the data 1... dx x′ ′  in addition to a 

dimensionality reduction to produce a feature vector x. Reducing the amount of data 

entering the classification stage often increases the accuracy of the later stage (it might 

 
feature extraction

 
classification data 

features
x  

1x′

dx′
Ck 

Figure 6.1: Typical architecture for pattern recognition 
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be helpful to consider that higher dimensional data can result in an ineffective sparse 

representation of all classes when the available data is limited). As we shall see later, 

effective pattern recognition is critically dependent on a good feature extraction 

strategy.  

 

The goal of the classification stage is, given the feature vector x , classify the data into 

one of a predetermined set of classes Ck. The classifier may be trained by a supervised 

or unsupervised paradigm. For the supervised case, target values are supplied, i.e. the 

features x belonging to class Ck are available. For the unsupervised case the aim might 

be to separate the data into distinct clusters. In general, the overall scheme of Figure 

6.1 may be viewed as a mapping of a set of input variables 1... dx x′ ′  to a set of output 

variables 1... cy y  representing the class labels 

 

 

where x′  refers to the vector of inputs and w represents the vector of parameters that 

may be adjusted to fit (6.1) to the data. The functions in (6.1) may be very general, for 

example, neural network classifiers may be represented by nonlinear functions, where 

w are interpreted as weights of the network. There is a trade-off in the complexity of 

the functions in (6.1). The central goal of (6.1) is to support generalisation, that is, the 

ability to make good predictions on previously unseen data. If the structure of the 

functions is deficient, the equations are unable to model the data well and the model is 

said to possess large bias. On the other hand, if the order of the model is too high for 

example, it might over fit the data resulting in high variance and poor generalisation.  

 

To discuss the statistical approach to pattern recognition, it is instructive to introduce a 

fictional system, which we take to be a device capable of detecting smells. The 

detection process commences with an analysis of a portion of air and a resultant 

feature vector x is generated based on a chemical analysis of the sample. The feature 

vector, comprising the concentrations of key chemicals, is supplied to a classifier, 

which must determine which of k classes Ck the feature vector belongs to. The prior 

probabilities P(Ck) correspond to the likelihood of class Ck.  If we were forced to make 

a decision without seeing the feature vector, the class with the highest prior probability 

would result in an above-chance classification. However, if the feature vector data is 

( , )k ky y x w′= (6.1)
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available, we have much more information to base a classification on. An example of 

useful information to ascertain are the class conditional probabilities as illustrated in 

Figure 6.2 (for a two class problem).  

 

 

 

 

 

 

 

 

 

 

 

 

If a component 1x of the feature vector corresponds to the concentration of a particular 

chemical, the input may be classified as smell C1 for a low concentration of the 

chemical and to smell C2 for a high concentration of the chemical. Determining which 

class a feature belongs to for an intermediate concentration requires more analysis but 

it can be shown that the intuitive result of choosing the class kC  for which 1( | )kp x C is 

largest gives the minimal error of misclassification (BISHOP, 1995). Of course, the 

quantity of most interest in statistical pattern recognition is the conditional probability 

( | )kP C x  i.e. the probability that given a feature vector x , the most likely corresponding 

class is kC . Bayes’ theorem is a useful result for manipulating such quantities and may 

be written as 

 

 

The usefulness of (6.2) stems from the fact that it is easier to evaluate the r.h.s. than 

the posterior probability on the l.h.s. In the context of statistical pattern recognition, 

(6.2) may be expressed as the probability that a feature vector belongs to a class Ck is 

equal to the product of its class conditional probability and its prior probability 

subject to a normalisation quantity (the denominator term).  

1x

1 1( | )p x C 1 2( | )p x C

Figure 6.2: Overlapping class conditional probabilities. The
probability of misclassification may be minimised by 
choosing the larger of the two probabilities given the 

feature vector component value 1x  

( | ) ( )
( | )

( )
k k

k
p x C P C

P C x
p x

= (6.2)
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6.3.1 Linear Discriminant Analysis 

Given an input vector x of features, the classification problem may be formulated in 

terms of a set of discriminant functions 1 2( ), ( ),..., ( )cy x y x y x  where an input vector x  is 

assigned to class Ck if 

    

 

i.e. choose the class for which the corresponding discriminant function is largest. We 

may derive a discriminant function in terms of Bayes’ theorem that minimises the 

probability of misclassification (BISHOP, 1995) by letting 

 

 

By omitting the class independent probability from (6.2), and taking the logarithm 

(valid according to (6.3) for any monotonic function) results in 

 

 

In this chapter, we will employ parametric classifiers, that is, classifiers that assume a 

specific functional form for the probability density function. A natural choice is the 

normal density function (appearing ubiquitously in nature thanks to the central limit 

theorem), given in d dimensions as 

 

 

where the mean vector and covariance matrix are given respectively by 
( )

( )( )T

E x

E x x

µ

µ µ

=

⎡ ⎤Σ = − −⎣ ⎦
  

By assuming that covariance matrices are identical for all classes kΣ = Σ , and 

neglecting constant terms, one forms the linear discriminant function 

 

 

In the sequel, we refer to application of (6.7) as Linear Discriminant Analysis (LDA). 

6.3.2 Cross-validation 

In practice, the quantity of labelled data available to train a classifier such as (6.7) is 

limited. The cross-validation procedure (BISHOP, 1995) is used in this chapter to obtain 

(6.3)( ) ( )k jy x y x for all j k> ≠

( ) ( | )k ky x P C x= (6.4)

( ) ln( ( | ) ln( ( ))k k ky x p x C P C= + (6.5)

(6.6)1
1/ 2 2

1 1( ) exp ( ) ( )
2(2 )

T

d
p x x xµ µ

π

−⎧ ⎫= − − Σ −⎨ ⎬
⎩ ⎭Σ

(6.7)1 11( ) ln( ( ))
2

T T
k k k k ky x x P Cµ µ µ− −= Σ − Σ +
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an estimate of accuracy for a particular feature extraction and classification scheme. 

The order of a data set (consisting of feature vectors) is first randomly shuffled and 

subsequently divided into N distinct segments. N-1 segments are used to train a LDA 

classifier and the remaining segment is used as the test set for which a classification 

accuracy is determined. This process is repeated for each of the N possible test sets 

and the mean test set accuracy is computed. Finally, the complete process is repeated 

M times with a new random shuffle each time to yield an overall mean accuracy. 

Figure 6.3 illustrates the cross-validation process. 

 

 

 

 

 

 

 

 

6.4 ARX Based Feature Extraction 
In this section, we explore a novel method for feature extraction and subsequent 

classification for application in DBIs based on evoked or event-related potentials. 

Before presenting the results of applying the technique, we review some of the more 

popular methods for feature extraction employed in DBIs and introduce the basic 

theory of parametric modelling. 

6.4.1 Popular Feature Extraction Methods for DBIs 

Although it is possible to use the EEG data samples themselves as features in a DBI 

for classification (e.g. DONCHIN et al, 2000)  computational efficiency and accuracy is 

usually greatly improved by feature extraction to achieve a transformation and 

dimensionality reduction of the data. The most common feature used for analysing 

oscillatory components of the EEG is the power in specific frequency bands. For 

example, WOLPAW et al (1991) control vertical cursor movement by ( )V G A I∆ = − , 

where G is gain, A is EEG amplitude in a specific band (square root of power in 8-12 

Hz mu rhythm or 20-25 Hz central beta rhythm), and I is an intercept. A more 

advanced method for analysing oscillating components employs an AR model for 

S1 S2 SN

Trial 1

Trial 2

Trial N

Figure 6.3: Cross-validation procedure. For each trial a segment is 
reserved as the test set (shaded) and the remainder used to train the 

classifier. See text for details. Reproduced from BISHOP (1995) 
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feature extraction (PENNY et al, 2000) or spectral estimation (WOLPAW et al, 2000). To 

circumvent problems with stationarity, PFURTSCHELLER et al (1996) employ an 

Adaptive AutoRegressive (AAR) model in the feature extraction stage for a DBI based 

on ERD and ERS.  

 

DBIs based on evoked or event-related potentials require special techniques for 

detection and measurement since the problem posed is somewhat different to other 

DBI types. Evoked and event-related potentials are of the order of a microvolt and 

must be extracted from the background EEG, which is of the order of 10 – 50 µV 

(CHILDERS et al, 1987). In clinical practice, the most common approach employs time 

domain averaging  to extract the signal from the background noise (MISULIS, 1994). 

Clearly, from the perspective of creating a real-time communication and control 

interface, this method of averaging is unsuitable. A plethora of techniques for single-

trial extraction have been published in the literature in the last 20 years (see CHILDERS 

et al (1987) for a review with application to event-related potentials), however the 

primary approach used in DBIs to date appears to be based mostly on cross-

correlation. SUTTER (1992) employs cross-correlation of the EEG with a known 

response template with varying delays to determine which area of a computer screen a 

subject is attending to. MIDDENDORF et al (2000) employ a simplified version of this 

technique involving just two icons. PATMORE and KNAPP (1995) suggest a DBI that 

harnesses EOG and evoked potentials to track gaze, again by employing cross-

correlation similar to Sutter (the EOG provides the primary signal for controlling a 

cursor and the evoked potential input is used to recalibrate errors due to drift of the 

EOG signal). HUGGINS et al (1999) use cross-correlation of a template 

electrocorticogram with the ongoing electrocorticogram originating from sensorimotor 

areas to detected repetitive voluntary motor movements. DONCHIN et al (2000) found a 

small, yet statistically significant increase in classification accuracy using coefficients 

of a discrete wavelet transform with a Daubechies wavelet over using the raw data 

samples for detecting the P300 event-related potential. 

6.4.2 Parametric Models 

By parametric models, we mean the family of linear transfer function models ranging 

from the simplest structures of the AutoRegressive (AR) and AutoRegressive with 

eXogenous input (ARX) models to the more general Box-Jenkins (BJ) model (LJUNG, 
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1987). The parametric modelling technique fits one of these structures to a sampled 

signal by adjusting its free parameters. Assuming the model provides a good 

approximation to the signal’s observed behaviour, a wide range of applications may be 

found for the model including spectral estimation, data compression, and feature 

extraction.  

 

Following LJUNG (1987), a general linear time discrete model can be written as 

( ) ( ) ( )y t t w tη= +  

where ( )tη is the noise-free output and ( )w t is the disturbance term. Assuming, 

without loss of generality a sampling interval of unity, the noise-free output may be 

written as 

( ) ( , ) ( )t G q s tη θ=  

where s(t) is the input and ( , )G q θ is a rational function of the shift operator q 
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where we have assumed a delay of k samples. Similarly, the disturbance term may be 

written as 

( ) ( , ) ( )w t H q n tθ=  

where n(t) is white noise and the rational function ( , )H q θ  is 
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The general model may thus be written as 

( ) ( , ) ( ) ( , ) ( )y t G q s t H q n tθ θ= +  

and is known as the Box-Jenkins (BJ) model. Figure 6.4 illustrates the structure.  

 

 

 

 

 

 

 

n(t)

y(t)
ΣB

F
s(t)

C
D

Figure 6.4: Box-Jenkins model structure



 150

The parameter vector θ contains the coefficients bi, ci, di, and fi. These parameters are 

chosen to fit the model to data after selecting the model orders nb, nc, nd, nf and delay 

k. In the next two sections we discuss relevant variants of the BJ model, and in each 

case, techniques to find the parameter vector θ that results in the optimum fit of the 

model to data. 

6.4.2.1 AR Model 

The AR model structure is the simplest of the Box-Jenkins family of models and is 

illustrated in Figure 6.5. 

 
 

 

 

The time domain equation for the AR model is 

 

and the predicted value of y(t) is simply (drop the zero mean n(t) term) 

1ˆ( ) ( 1) ... ( )n ay t a y t a y t n= − − − − −  

The forward prediction error may be written as 

 

where, as before, θ is the vector of model parameters. To fit the model to the data y(t) 

collected over a period t = 1, …, N, we choose θ̂  such that it minimises 

 

 

which may be achieved by setting 

0
i

E
a
∂

=
∂

 

for 1 ai n≤ ≤ , resulting in a set of na equations in na unknowns. Solving for the model 

coefficients and substituting the expressions back into (6.10) results in the Yule-

Walker equations 

 

 

 

 

 

A-1(z)
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Figure 6.5: AR model structure
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(6.9)ˆ( , ) ( ) ( , )e t y t y tθ θ= −
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where Rτ  is autocorrelation approximation 

1

1 ( ) ( )
N

t
R y t y t

Nτ τ
=

= −∑  

The Yule-Walker equations (6.11) may easily be solved by standard Gaussian 

elimination or an optimised recursive technique by Levinson-Durbin (PARDEY et al, 

1996). 

 

The AR model may be conveniently used for spectral estimation. Taking the z-

transform of (6.9) yields 

( ) ( ) ( )E z A z Y z=  

where 

1
( ) 1

an
i

i
i

A z a z−

=

= +∑  

The transfer function of the AR model is thus 
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The frequency response is obtained by letting jwTz e= where T is the sampling period 

(taken to be unity throughout for simplicity). Assuming E(z) approximates white noise 

well, the spectrum will be flat and hence may be described by a constant ( )E jw ε= . 

The estimate of the output spectrum is given by (assuming a sampling interval of 

unity) 

 

 

 

 

Equation (6.12) provides for the frequency domain interpretation of the AR model, 

namely an all-pole filter driven by flat-spectrum white noise. This representation fits 

well with the characterisation of the EEG as a noisy signal with certain preferred 

frequency bands. Moreover, the spectral estimates obtained by (6.12) are constructed 

using a continuous function of frequency and hence a significant improvement in 

frequency resolution over traditional periodogram methods may be achieved with this 

technique (PARDEY et al, 1996).  
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One of the earliest applications of AR modelling to the EEG was by ZETTERBERG 

(1969), incorporating it in an effective technique for obtaining neurophysiological 

relevant spectral parameters (see ISAKSSON and WENNBERG (1975) for a practical 

example). AR feature extraction was employed by PENNY et al (2000) to distinguish 

between motor imagery and a baseline, and motor imagery and a math task for use in a 

DBI.  Typically, the AR model is appropriate when fitted to short, quasi-stationary 

segments of approximately 1 second in duration (PARDEY et al, 1996). 

PFURTSCHELLER et al (1996) analyse longer segments of EEG by using adaptive 

models to update the model parameters with the arrival of each new data sample. AR 

spectral estimation is also becoming popular for the reasons previously mentioned and 

was employed in a DBI by WOLPAW et al (2000). 

6.4.2.2 ARX Model 

The ARX model structure is obtained by including an exogenous input filtered by a 

transfer function with both numerator and denominator (AutoRegressive Moving 

Average) in (6.8). By assuming the noise enters early, the denominator polynomial can 

be assumed to be common, resulting in the ARX structure which is illustrated in 

Figure 6.6. 

 

 

 

 

The time domain equation for the ARX model is 

 

 

 

where s is the exogenous input and k is the delay. The predicted value of y(t) may be 

written as 

ˆ( | ) ( )Ty t tθ θ ϕ=  

where the column vector θ  contains the model parameters 
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Figure 6.6: ARX model structure

1

1

( ) ( 1) ... ( )

( ) ... ( 1)

( )

a

b

n a

n b

y t a y t a y t n

b s t k b s t k n

n t

= − − − − −

+ − + + − − +

+ (6.13)



 153

[ ]( ) ( 1) ... ( ) ( ) ... ( 1) T
a bt y t y t n s t k s t k nϕ = − − − − − − − +  

The forward prediction error is 

 

and to fit the model to data we choose θ̂  such that it minimises (6.10). Inserting (6.14) 

into (6.10) results in 
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Assuming R is invertible, then (6.15) may be written as 
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This expression is minimised when 
1ˆ R fθ θ −= =  

and provides an explicit equation for determining parameters which minimise the 

forward prediction error. 

 

ARX models in the context of the EEG allow us to model a known deterministic signal 

such as an ensemble averaged evoked or event-related potential, linearly superimposed 

with a random background component (the ongoing EEG). CERUTTI et al (1988) 

employed the ARX model to filter Movement-Related Brain Macropotentials thereby 

drastically improving the signal to noise ratio of each single-trial for use in 

pathophysiological studies. The output of the filter was taken as the ARMA filtered 

exogenous input. In the present study, we make the previously unreported step in 

employing the ARX for feature extraction in a DBI. This technique extends the proven 

AR technique for EEG feature extraction (ZETTERBERG, 1969; PARDEY et al, 1996) by 
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including information pertaining to the known underlying endogenous or exogenously 

generated signal. 

6.4.2.3 Model Order Estimation 

We have thus far not discussed how to select model orders for the presented 

parametric models. Selecting model orders is a trade-off exercise between bias error 

and variance error. Bias error refers to inadequacies of the model to fit the data (even 

with an infinite amount of noise-free data) due to deficiencies in model structure. 

Variance error occurs when an experiment is repeated with the exact same input but 

different model parameters result. The output is not the exact same since the noise 

contributions are different each time. Using larger data sequences can often reduce 

variance error.  

 

There are a number of methods for selecting optimum model order for parametric 

models in the literature. A popular method is the Akaike Final Prediction Error (FPE), 

which penalises higher order models and is given by (AKAIKE, 1969) 

1( ) ( )
1

a b

a b

N n nFPE E
N n n

θ θ+ + +
=

− − −
    

(where nb = 0 for the AR case). Of course, one should not lose sight of the real goal 

here of achieving a DBI with the best classification accuracy and the ultimate model 

order choice should be based on classification accuracies. Hence, we will use the FPE 

technique only as a guide to selecting model orders. 

6.4.3 Comparison between ARX and AR features 

In this section we compare the familiar AR feature extraction technique traditionally 

applied in direct brain interfacing to the ARX case where an evoked or event-related 

potential is employed as the exogenous input. A left/right self-paced typing exercise is 

analysed with six subjects. The ensemble averaged Bereitschaftspotential (an event 

related potential preceding the onset of movement)  forms the exogenous input to the 

ARX model. The results show that the ARX case of modelling both the signal and 

noise was found to be considerably more effective than modelling the noise alone with 

the AR method yielding a classification accuracy of 52.8 ± 4.8% and the ARX method 

an accuracy of 79.1 ± 3.9 % across subjects. The results strongly suggest a role for 

ARX-based feature extraction in DBIs based on evoked and event-related potentials. 
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6.4.3.1 Experiment paradigm 

A left/right self-paced typing exercise paradigm was employed with subjects sitting 

upright and fingers in the standard typing position at a Qwerty keyboard. The task 

consisted of pressing the left or right "home keys" with the corresponding fingers in a 

self-chosen order and timing. No feedback was given. The EEG was recorded using 

two bipolar leads with Grass P511 amplifiers (with 50 Hz line filter) from channels C3 

and C4 of the 10-20 system, corresponding to the left and right primary motor areas 

respectively. The horizontal EOG from the right eye was also recorded. The signals 

were digitised at a sampling frequency of 512 Hz, low-pass filtered with a cutoff of 64 

Hz and down-sampled to 128 samples per second.  Six subjects took part in the trials 

(all male, aged between 22-25 years, in full health) in a single session per subject each 

lasting 10 minutes, resulting in a total of 60 minutes of data. Key presses were made 

on average every 2-3 seconds resulting in 200 - 300 epochs of 1500 ms length, ending 

120 ms before the keystroke, thus avoiding effects of EMG activity masquerading as 

control signals. Trials where significant EOG activity took place (eye blinks) were 

omitted (< 2% of the collected data) from analysis (achieved automatically by linearly 

detrending and removing those time series whose maximum, rectified EOG amplitude 

exceeded a threshold). 

6.4.3.2 Bereitschaftspotential  

The experiment paradigm just described produces an event-related potential known as 

the Bereitschaftspotential (BP) - a gradually rising negative potential occurring about 

1000 ms preceding the onset of movement (MISULIS, 1994). DEECKE et al (1969) 

identified an additional 3 components of the BP: a pronounced contralateral negativity 

over the precentral and parietal areas starting about 500 to 200 ms prior to movement, 

a small positive deflection beginning around 90 ms prior to movement, and a smaller 

negative potential starting about 50 ms prior to movement predominant over the 

primary motor cortex. Figure 6.7 illustrates the ensemble averages for C3 and C4 

recordings for left and right self-paced movements from a single subject. Note the 

contralateral negativity commencing approximately 500 ms before the onset of 

movement at 0 s. 
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6.4.3.3 Results 

To obtain an estimate of accuracy, a cross-validation procedure was employed (see 

Section 6.3.2). The trials for each session (consisting of parametric model coefficients) 

were first randomly shuffled and subsequently divided into N distinct segments. N-1 

segments were used to train a LDA classifier and the remaining segment used as the 

test set. This process was repeated for each N possible test sets and the mean test set 

accuracy computed. Finally, the complete process with a new random shuffle was 

repeated M times to yield a mean accuracy and standard deviation. The data was 

uniformly processed with M = 20 and N = 10. 

 

Table 6.1 displays the LDA classification accuracy for each subject in addition to the 

parametric model orders that yielded optimum accuracy for the ARX model (the 

Akaike FPE was used as a starting point for selection of model orders). In all subjects, 

the optimum classification accuracy was obtained for the same order na in both the 

ARX and AR models. 
 

 

Figure 6.7: Ensemble average of left movements and right movements for 
electrodes C3 and C4 (movement occurs at 0 s). Note the contralateral 

negativity starting about 500 ms preceding movement 
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TABLE 6.1: PARAMETRIC MODEL ORDERS AND CLASSIFICATION ACCURACY 
 na nb ARX acc. % AR acc. % 
Subject 1 4 2 82.1 55.1 
Subject 2 4 2 77.8 55.0 
Subject 3 3 2 79.5 60.1 
Subject 4 4 2 71.8 47.7 
Subject 5 3 2 81.1 49.1 
Subject 6 3 2 82.2 49.5 

  Mean: 79.1 52.8 
 

Figure 6.8 illustrates the mean accuracy and standard deviation over each shuffle for 

each subject for the AR and ARX models in the feature extraction stage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean accuracy over all subjects for ARX features is 79.1 ± 3.9% whilst for AR 

features is 52.8 ± 4.8%. The results show clearly that for each subject the ARX set of 

features yields a higher classification accuracy than the AR features. 

6.4.3.4 Discussion 

The common denominator structure of the ARX model, implying that noise enters 

early in the modelled process seems physiologically reasonable as ongoing EEG 

contributions from neighbouring neural populations to those firing synchronously 

contribute mostly to the background noise (MISULIS, 1994). Modelling the 

contributions of both the known signal (ensemble averaged evoked or event-related 

potential) and the noise (EEG) yields better features for the classifier and is an 

intuitively satisfying result. 

Figure 6.8: Mean accuracy % over M = 20 random shuffles for each  
subject for AR and ARX features 
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The experimental paradigm employs short, quasi-stationary epochs of 1.5 seconds for 

analysis terminating 120 ms before the onset of movement. It is quite likely that longer 

epochs, for example those used in PFURTSCHELLER et al (1996), would yield higher 

accuracies for the AR model by also extracting pertinent features of event-related 

desynchronisation. The results suggest that the ARX feature extraction approach 

should  prove useful for DBI systems based on evoked and event-related potentials e.g. 

SUTTER (1992), FARWELL and DONCHIN (1988). The model orders in (6.13) for the bi 

coefficients are larger for more complex morphological waveforms such as the P300 

(as demonstrated in FINUCANE et al (2003)). 

 

Parametric feature extraction and classification stages are simple to implement, 

computationally efficient, and thus are suitable for implementation in real-time for 

DBI systems. With any DBI, speed and accuracy are important metrics for comparison 

with generally an inverse relationship between them. Evoked and event-related 

potentials can be elicited on a suitably short time scale and with sufficient 

classification accuracy, are well suited to the task at hand. The choice of employing an 

LDA was prompted by the emphasis of the research being on the extraction of 

pertinent features rather than on the classifier itself, nevertheless LDA classifiers are a 

natural choice providing computationally simple discriminant functions that minimise 

the error of misclassification. While application of higher order classification 

strategies such as Quadratic Discriminant Analysis (assumes non-uniform covariance 

matrices) did not improve classification results, it is possible that selective feature 

approaches such as Linear Selective Stepwise Analysis might yield better results 

(CHILDERS et al, 1987). 

 

6.5 SIDEBAR: An Eye-Blink Interface 
Most EEG-based DBIs harness electrical activity originating from somatosensory, 

motor, or visual areas of the cortex. These areas may be severely damaged in people 

with stroke or neurogenerative disease and hence other methods of communication or 

control may be sought. In this sidebar, we consider an alternative interface for 

communication and control based on image processing of blinking action (BURKE et 

al, 2001). Sophisticated mathematical algorithms (such as differencing, thresholding, 

aggregation and statistical analysis of skin colours) are used to compare successive 
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frames of computer-captured images of the face. From these, changes in state of the 

eyes are determined and are used to detect blinks. A recognition performance of 83.74 

± 0.03% is achieved over five subjects. A logical decision rule identifies purposeful 

blinks and applies them to control either a custom-designed communication package 

or an external device. 

6.5.1 Background 

There are non-contact systems available to detect eye gaze based on infrared, e.g. the 

Eyegaze System, CLEVELAND and DOYLE (1992). While effective, these systems 

require specialist equipment and suffer from the requirement that the user must 

calibrate the system, which necessitates some level of cognition to be first established 

with disabled patients. In contrast to marker-based systems such as MIYAZAKI et al 

(2000), the philosophy adopted here was to develop an entirely non-contact, marker-

free, solution, using an inexpensive digital camera (‘a webcam’), a desktop PC 

(Pentium III, 500 MHz), and a judicious choice of sophisticated techniques from 

digital image processing. Digital image processing is a very wide field but for present 

purposes can be regarded as a collection of mathematical algorithms applied to 

computer stored visual images in order to extract features, which can be used to 

accomplish some desirable end. By dispensing with the requirement of markers, the 

system presents itself as unobtrusive and simple to use to both therapist and patient 

alike. Based on a development of ideas described in CLARKE et al (1998), the 

mathematical techniques are summarised in the next section.  

6.5.2 Methods 

The basis of our blink detection method invokes the classic Euclidean distance 

formula to measure the colour difference between successive frames of images. Each 

pixel has a colour associated with it represented by its discrete tristimulus values (red 

(R), green (G), and blue (B) parameters corresponding to intensities ranging from 0 to 

255). The colour distance for a pixel (i, j) between frame n and n-1 is calculated from 

 

( ) ( ) ( )222 ]1[][]1[][]1[][][ −−+−−+−−= nBnBnGnGnRnRnd ijijijijijijij  

 

By applying a threshold to the above equation, we can extract only those pixels that 

have changed significantly in intensity between two successive frames, i.e. if dij[n] > 
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dthrehold then set pixel (i,j) colour to blue say, otherwise set to white. Figure 6.9 

illustrates the effect for a blink. 

 

 

 

 

 

 

 

 

 

Next, we determine the two aggregations of pixels having the largest areas. We 

accomplish this by using an algorithm that traces the perimeter of all groups of 

adjacent pixels in the frame and reports the respective areas. Eyes are classified as 

detected when the horizontal and vertical separations between the largest two 

aggregations are verified to be between obvious anatomical bounds (assuming an 

approximate vertical orientation of the head).  

 

Although the techniques presented thus far can be used to detect eye blinks, they still 

require some refinement to remove false detections due to saccadic movements of the 

eyes (or in the case of one patient, to filter the effect of nystagmus).  To differentiate 

eye movements from actual eye blinks, we make use of the fact that on average pixels 

representing closed eyes will be predominately flesh coloured. On detection of the first 

blink (or a saccadic eye movement as the case might be), we sample a rectangular area 

surrounding the eyes (proportional to the inter-eye separation) to generate a statistical 

histogram of flesh colours. To simplify computation, and remove brightness 

information, we normalise the tristimulus values, producing the trichromatic 

coefficients GONALES and WINTZ (1987) 
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Figure 6.9: Detection of blinks by the colour distance method 
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Since 

1=++ bgr  

we can now evidently describe chromaticity by just two values e.g. r and g. Figure 

6.10 illustrates an example of a histogram of flesh colours sampled in an area 

surrounding the eyes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The brightness has been normalised and we are now viewing just the chromatic (hue 

and saturation) information. Once the histogram has been generated, the trichromatic 

coefficients of pixels from subsequent frames are compared to the stored distribution 

and the relative frequency of each measured chromaticity is determined. Frequencies 

above a threshold are characterised as flesh colour. Figure 6.11 illustrates the flesh 

colour filtering mechanism (flesh colours are shown in blue). With successive blinks, 

we compute the average probability that the detected pair of pixel aggregates is flesh 

coloured (i.e. eyelids are closed) and probabilities above a certain value are classed as 

true blinks. 

Figure 6.10: Distribution of the trichromatic coefficients of a flesh 
sample in an area surrounding the eyes 
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6.5.3 Results 

Five volunteer subjects (2 male, 3 female, aged between 21 and 25) each performed a 

set of five experimental blocks lasting two minutes each. This translates to 50 minutes 

(5x5x2) of analysis. During each experimental block, subjects were placed in a seated 

position 0.5 metres from the digital camera and asked to look in the direction of the 

camera, while remaining reasonably still. A second camera recorded the subject’s face 

and its output was routed to a video/audio capture board in a separate PC. Each 

detected blink resulted in an audio track to toggle between play and pause and this 

audio was recorded simultaneously by the capture board. The captured audio and 

video were then manually analysed offline and the fraction of true positives and false 

positives determined for each experimental block for each subject (Table 6.2).  

 
 

TABLE 6.2: ACCURACIES (A: ACTUAL BLINKS; D: DETECTED BLINKS; F: FALSE POSITIVES) 
 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 
 A D F A D F A D F A D F A D F 
Subject 1 54 48 0 48 39 2 48 42 0 45 38 1 57 52 1 
Subject 2 25 20 0 13 10 0 11 10 1 40 35 0 32 27 0 
Subject 3 11 9 1 23 19 2 16 15 0 12 8 0 21 19 0 
Subject 4 42 34 0 29 22 2 49 38 1 17 15 0 23 21 2 
Subject 5 33 27 0 34 27 2 33 26 0 36 30 0 33 29 3 
 

 

Figure 6.12 presents the results (mean and standard deviation) for each subject. 

Performance averaged over all subjects yields 83.74 ± 0.03% for true positives and 

2.71 ± 0.01% for false positives. 

 

 

Figure 6.11: Detection of flesh colours 
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6.5.4 Discussion 

The preliminary results on the use of real-time digital image processing in the 

implementation of a non-contact human-computer interface are promising, indicating 

that this type of technology is sufficiently robust to be used in rehabilitation 

applications. A component architecture has been developed where the blink detection 

system runs in a separate process and inter process communication (IPC) allows 

different applications to be effectively 'plugged-in'. The first application uses 

purposeful blinks to control the switching action of a CD player, common in the 

average personal computer. The second application utilises blinks to control a custom 

designed communication program, allowing users to build up sentences letter by letter, 

and produce synthesised speech. With each application, an adaptable logical decision 

rule operates allowing different blink rates to trigger the corresponding control action. 

Only the on-response is detected since this allows us to filter eye movements, which 

can sometimes give erroneous results.  Where large head movements occur, the system 

does not attempt to detect blinks (since determining the position of the eyes becomes 

problematic) although this has not been an issue with the type of patients the system 

was built for. An improvement in the blink detection algorithms might account for 

large head movements by tracking the position of the eyes (by first locating the face by 

the flesh colour filtering mechanism) and performing the difference operation on the 

pixels marked as representing the eyes.  

Figure 6.12: Fraction of true positives and false positives for each subject 
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6.6 fMRI Direct Brain Interface 
Functional Magnetic Resonance Imaging (fMRI) is a recent imaging technique for 

determining which parts of the brain are activated in response to a stimulus or event 

(KWONG et al, 1992). In contrast to techniques such as the EEG, fMRI does not 

measure electrical activity of the brain but rather changes in local blood flow, volume, 

and oxygenation. These haemodynamic changes typically occur within a few seconds 

of neural activity (COHEN and BOOKHEIMER, 1994). There are already ample results in 

the literature that demonstrate the ability to detect phenomena conducive to building 

DBIs including, for example, imagined movement (KOSSLYN et al, 2001), steady-state 

visual responses (KASHIKURA et al, 2002), oddball paradigms and P300-related 

responses (HOROVITZ et al, 2002; MCCARTHY et al, 1997). Detecting haemodynamic 

phenomena is analogous to detecting evoked and event-related potentials due to the 

poor signal to noise ratio (WEISSKOFF et al, 1993) and in this section we apply the 

ARX feature extraction and LDA classification scheme to the problem of single-trial 

event-related fMRI detection. 

 

The primary advantage of fMRI over EEG is in its millimetre spatial resolution and 

accuracy (COHEN and BOOKHEIMER, 1994). Functional MRI, like the EEG, is a non-

invasive technique but suffers from the disadvantage that it operates on a 

fundamentally longer time-scale and requires complex equipment to produce data, in 

particularly the requirement of a large magnetic field to operate the imaging 

mechanism. Nevertheless, work is underway to combine the temporal resolution of 

EEG with the spatial accuracy of fMRI (HUANG-HELLINGER et al, 1995) and this may 

one day pave the way for the ultimate data source for DBIs. For completeness, we 

outline briefly the mechanisms underlying MRI and fMRI in the next section. A study 

of single-trial detection of event-related fMRI at 1.5 Tesla is presented that results in 

the ability to classify single-trial events with an accuracy of 69.3 ± 0.1% using the raw 

data samples as features and with an accuracy of 73.3 ± 2.0% when employing the 

ARX feature extraction strategy. 

 

6.6.1 MRI and fMRI Basics 

MRI is a complex technique and we only describe the basics here such that the results 

in the subsequent sections can be understood – the interested reader is referred to 
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ROSEN et al (1998), COHEN and BOOKHEIMER (1994), and KWONG et al (1992) for 

good starting points to the literature. 

 

6.6.1.1 Nuclear Magnetic Resonance 

MRI is based on the physics of Nuclear Magnetic Resonance (NMR). Protons such as 

those found in the hydrogen nucleus in water are slightly magnetic. Under the 

influence of a large magnetic field B , there is a tendency for the protons to align 

themselves with the field. Magnetisation density refers to the amount per unit volume 

that an object in B  is magnetised at any given location and is denoted by M . After a 

short period of time, the B and M vectors will become aligned and the condition is 

called fully relaxed magnetisation. Application of radio frequency (RF) radiation at the 

correct resonance frequency will disturb the magnetisation. If the RF signal is 

removed, the protons relax back to align with the external field. However, the resultant 

path of the vector M  is not simple, rather the phase-synchronised angular momentum 

of the nuclei (spin) will cause the resultant vector to precess (rotate) about B and emit 

RF signals as it does so (see Figure 6.13). The emitted RF may be detected by 

conventional means, its frequency being dependent on the strength of the magnetic 

field at the location of its origin. By employing orthogonal gradients in the externally 

applied field B  and detecting the emitted RF over a range of frequencies, an image of 

RF intensity over an object may be obtained.  
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Figure 6.13: When disturbed from the relaxed state, M precesses about B in a clockwise
direction at the Larmor frequency, f Bγ= , while emitting RF radiation. The precession 

rate is much larger than the rate at which M relaxes back to the B direction  



 166

Different tissues and structures display different characteristic intensity relaxations and 

thus static images consisting of many volume elements called voxels may be obtained.  

6.6.1.2 fMRI Principles 

Functional MRI is concerned with obtaining time course information of NMR signals 

from voxels of interest by acquiring a series of rapid MRI images under different task 

conditions. The signal changes of interest (contrast) are those occurring as a result of 

neural activity to blood flow, volume, and oxygenation and are collectively known as 

haemodynamic effects. It should be noted that fMRI is a complex, indirect measure of 

neural activity (neural activity → blood flow → NMR signal) and caution should be 

applied when interpreting the resultant signal. Haemodynamic changes are 

considerably slower than EEG measures, for example changes related to oxygenation 

take 4-5 seconds to reach a peak, another 5 seconds to return to baseline, and are 

followed by an undershoot for a subsequent 10 seconds (BOYNTON et al, 1996). 

 

There are four specific haemodynamic signals that influence the NMR signal (the 

exact physiological mechanisms of how neural activity signals haemodynamic changes 

is yet to be elucidated) including: 

- increased blood flow (NMR signal ↑) 

- oversupply of oxyhaemoglobin (NMR signal ↑) 

- increased blood volume (NMR signal ↓) 

- increased capillary flow (NMR signal ↑) 

Local changes in arterial blood flow into a neurally active region will influence the 

NMR signal because of an increase in supply of water into the volume. These changes 

occur proximal (upstream) to the true site of activation and are highly dependent on 

the arterial supply to the region in question. Oxygen supply to capillaries does not 

remain constant during neural activation and in fact an over-supply of 

oxyhaemoglobin occurs. This is detectable distal (downstream) to the active region 

and results in an increase in the NMR signal. This phenomenon is known as the BOLD 

(Blood Oxygen Level Dependence) effect and is the basis for the majority (including 

ours) of fMRI studies (COHEN and BOOKHEIMER, 1994). Increased blood volume in 

response to neural activation occurs as a result of a ballooning effect of veins distal to 

the site of activation. After passage through capillaries, oxygen is removed resulting in 

a build up of deoxyhaemoglobin, which reduces the resulting NMR signal. Finally, 
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increased blood flow can be detected in capillaries by virtue of the fact that most water 

molecules that flow into capillaries do not flow out at the other end. By labelling the 

water molecules (using proton magnetisation), it is possible to detect flow into 

capillaries. This method is not yet widespread but gives better spatial localisation than 

the BOLD technique (ROSEN et al, 1998). 

 

The fMRI BOLD response may be modelled by the γ-variate model (COHEN, 1997; 

GARAVAN et al, 1999) given by 

 

 

Figure 6.14 illustrates a modelled response with realistic parameter values (GARAVAN 

et al, 1999) as per the figure caption. 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

COHEN (1997) showed that the form of fMRI response to stimuli of freely varied 

timing is satisfactorily modelled by convolution of the impulse response (6.16) and the 

behavioural stimulus. 

 

As mentioned at the outset, detecting responses of the form of (6.16) is difficult due to 

the low signal to noise ratio. At 1.5 Tesla, the changes that occur to the NMR signal 

during activation are only about 2-5% the amplitude of the background signal (COHEN 

and BOOKHEIMER, 1994). Magnetic field inhomogeneities can cause fMRI images to 

contain artefacts and ‘ghosts’ – faint duplicates of portions of an image displaced to 

Figure 6.14: γ-variate function model of a typical haemodynamic 
response. Parameter values: k = 0.01, r = 9, b = 0.5  
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incorrect locations. Aside from the inhomogeneities inherent in construction of the 

scanner’s electromagnets (although these can be somewhat calibrated electronically in 

a process known as shimming), placing an object inside the magnet’s bore will alter 

the field due to the material’s magnetic susceptibility. Gross motion of the subject 

being scanned also affects the resultant NMR signal, with small motions affecting the 

signal greatly. Motion outside of the scanned region e.g. swallowing or speaking will 

also affect the NMR signal due to magnetic susceptibility altering the magnetic field 

within the brain. Other physiological motions e.g. breathing will have similar effects. 

 

6.6.2 Single-Trial Detection of Event-Related fMRI 

In this section we describe preliminary results that test the ability of the ARX feature 

extraction and LDA classification strategy to detect single-trial fMRI responses. The 

central assumption is that the various noise sources are uncorrelated with the fMRI 

response (see Section 6.6.1.2) and may be modelled as a white noise source filtered by 

an autoregressive model. An ARMA structure models trial-by-trial variability and the 

combined structure (assuming a common denominator polynomial) results in the ARX 

model (6.13) as before. A comparison of classification accuracy of using the raw data 

samples and the ARX features is made to verify its validity. 

 

6.6.2.1 Methods 

The experiment paradigm was that of GARAVAN et al (1999) and employed the same 

data. Subjects were presented with a stream of letters serially every 500 msec and 

instructed to make a response whenever certain target letters (X or Y) were presented. 

An additional rule stipulated that responses must alternate between the targets, such 

that if the most recent target was, for example, the letter X, then subjects should only 

respond to the next letter Y in the letter stream. GARAVAN et al (1999) identified 

regions (strongly lateralised to the right hemisphere), which were activated by subjects 

correctly withholding a motor response. In our experiment, 12 voxels from a single 

subject were identified for showing a strong response (6 voxels) and no response (6 

voxels) respectively by performing a goodness of fit to the ideal haemodynamic shape 

(6.16). Three sessions (each 136 seconds duration) were performed for the subject and 

fMRI events were separated by an average of 20 seconds to reduce the possible effects 

of overlapping responses. A haemodynamic template was obtained by ensemble 

averaging over the events from the active voxels per session using a time window of 
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20 seconds. This template forms the exogenous signal to the ARX model. Model 

orders were selected on the basis of yielding optimum classification accuracy. To 

avoid problems with ill-conditioned matrices as a result of the coarse sampling period 

(2 seconds), the fMRI data was resampled at 5 times its original rate using low-pass 

interpolation.  

 

6.6.2.2 Results 

To obtain an estimate of accuracy, a cross-validation procedure was employed. The 

data was uniformly processed with M = 30 and N = 15 (see Section 6.3.2). Table 6.3 

displays the LDA classification accuracy for the raw data samples and for the ARX 

features and its corresponding model orders (chosen for yielding optimal classification 

accuracy). 
TABLE 6.3: MODEL ORDERS AND CLASSIFICATION ACCURACY 
 na nb ARX acc. % Raw acc. % 
Session 1 7 4 71.0 69.3 
Session 2 7 3 74.2 69.3 
Session 3 7 3 74.7 69.2 

  Mean: 73.3 69.3 
 

Figure 6.15 illustrates the mean accuracy and standard deviation over each shuffle for 

each session for the ARX model in the feature extraction stage and for using the raw 

samples as features. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.15: Classification accuracies for ARX features (diamonds) 

and raw samples as features (circles) over three sessions  
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The mean accuracy over all three sessions for ARX features is 73.3 ± 2.0% while for 

the raw samples as features is 69.3 ± 0.1%. In each session, the ARX set of features 

yielded higher classification accuracy than employing the raw data samples as 

features. 

 

6.6.2.3 Discussion 

Early fMRI experiment paradigms were based upon those used in Positron Emission 

Tomography (PET), i.e. employing a block design consisting of extended periods of 

“on” versus “off” activations (ROSEN et al, 1998). While radio-pharmaceutical based 

imaging such as PET mandate such paradigms to achieve quasi-equilibrium 

physiological states for about 1 minute, it has been shown that stimuli as short as 34 

ms can elicit fMRI responses (ROSEN et al, 1998) and has led to the event-related 

fMRI paradigm. Event-related fMRI allows investigators to study new tasks not 

possible with the conventional block design e.g. unpredictable responses such as 

inhibition (GARAVAN et al, 1999), or the effect of novelty as in the oddball paradigm 

(MC CARTHY et al, 1997). Typically, event-related fMRI data is studied by fitting 

responses (often selectively averaged over many trials to increase signal to noise ratio) 

to a model and employing statistical tests (e.g. GARAVAN et al, 1999; JOSEPHS et al, 

1997). A natural extension of this is single-trial detection of event-related fMRI 

responses analogous to event-related or evoked potential detection in the EEG. 

Accessing single-trial information in fMRI may: 

- allow for Direct Brain Interfacing, 

- facilitate new adaptive experiment designs, 

- enable integration with other single-trial electrophysiological methods 

- enable biofeedback applications, 

- provide an objective measure of mental performance, and 

- enable lie detection mechanisms. 

 

The results for single-trial detection of responses at 1.5 Tesla suggest a role for 

parametric classification strategies and also parametric models for feature extraction in 

singe-trial event-related fMRI. Since the signal to noise ratio scales with magnetic 

strength (COHEN and BOOKHEIMER, 1994), improved results are expected at higher 

magnetic field strengths. While our main concern here has been detection of single-

trial event-related responses, information about the unique aspects of an isolated event 
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might also be obtained by using the ARX model as a filter as in the original 

publication applied to EEG event-related potentials by CERUTTI et al (1988). 

 

Creating an effective Direct Brain Interface requires a high information transfer rate 

and often a trade off between speed and accuracy. The temporal resolution of fMRI, 

fundamentally limited by the haemodynamic mechanisms that produce it, places an 

upper limit on the communication rate achievable by this method for DBI applications. 

However, as mentioned earlier, combining the spatial advantages of fMRI with the 

temporal advantages of simultaneous EEG measurement may soon yield a new 

intriguing source of data for DBIs. Our method goes some way to facilitating a tighter 

integration between fMRI and more traditional single-trial electrophysiological 

methods. In practice MRI scanners, requiring large magnetic fields to operate, have a 

long way to go before being able to compete with their electrophysiological 

counterpart methods in terms of portability but consequences of work such as 

HALPERIN et al (2001) on high-temperature superconductors may one day lead to 

practical, more cost effective scanners that could be used as part of a DBI solution. 

 

6.7 Summary 
Assuming a stochastic characterisation of the EEG, the AR model for feature 

extraction was extended to the ARX case for use in evoked and event-related potential 

based DBIs. The ARX model characterises the signal into deterministic (evoked or 

event-related potential) and stochastic (EEG) components. The increase in accuracy of 

the ARX method over the AR method is significant, and was verified over six 

subjects. This method has also recently proved useful for P300-based DBIs (FINUCANE 

et al, 2003). The fMRI signal was harnessed using the same paradigm, thus exploiting 

the analogous problem of single-trial haemodynamic response extraction. This 

technique should prove useful in combining fMRI and electrophysiological data where 

the spatial resolution benefits of the former complement the temporal resolution of the 

latter. As an aside, an alternative human-computer interface based on blink detection 

was presented. This non-contact interface may be appropriate for disabled people who 

have sustained damage to sensorimotor and visual cortical areas.  
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CHAPTER VII 

CONCLUSION 
 

Driven by the goal to create practical, direct brain interface applications, this thesis has 

sought to explore and characterise the EEG signal using a substrate of dynamical 

systems theory as the primary technical tool.  The principal observation of this treatise 

is that macroscopic brain electrical activity manifests itself not as a system exhibiting 

chaotic dynamics but rather as a nonlinear, stochastic dynamical system. The body of 

work encompasses material ranging from system theoretic discussions and novel 

mathematical constructions through to successful practical applications influenced by 

the preceding work. As the work evolved, new avenues of study presented themselves 

in almost every major topic studied. The chapters are structured in such a way that, 

rather than conclude each with a short summary, the final section of the chapter 

discusses areas which the author feels deserves further study. We bring the thesis to a 

close here by providing a summary for each chapter in turn, with particular emphasis 

on possibilities for future study.  

 

A novel method for prescribing deterministic limit cycle oscillators for given 

geometric planar curves is presented in Chapter II. La Salle’s extension to Lyapunov’s 

Direct Method (LA SALLE and LEFSCHETZ, 1961) provides the vehicle for proving 

asymptotic stability of the limit cycles. This construction is quite powerful, facilitating 

one to create oscillators with arbitrary prescribed geometries and is expected to have 

application in areas including electronic signal generation, modelling, and education. 

For the purposes of this thesis, it provides a solid basis for developing upon in later 

chapters. A second method for constructing oscillators is also presented that allows 

one to synthesise certain classes of periodic signals by using a derivative coordinate 

embedding. Initial results are promising but the current method introduces stiff 

equations. The author feels that further research is warranted to alleviate the disparate 

time scales resulting in the current proposal thus aiding practical implementation of 

the oscillators. 

 

In Chapter III, the prescribed oscillator technique is extended using Itô calculus to 

produce stochastic limit cycle oscillators. Although dating back to the 1940s, Itô 
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stochastic differential equations have only recently started to gain popularity in the 

applications literature. In particular, biomedical studies involving such constructs are 

rare. To perform simulation studies, a new extensible software toolbox for solving 

stochastic differential equations has been created. As one might expect, stochastic 

stability theory is much less well developed than its deterministic counterpart but 

nevertheless a stochastic version of Lyapunov’s Direct method does exist 

(HAS’MINSKII, 1980). Armed with this, we produce a definition of the prescribed 

stochastic limit cycle as an invariant set. A stochastic limit cycle oscillator model of 

the EEG is constructed and is demonstrated via numerical simulation to reliably 

reproduce the visually displayed patterns of the EEG, its spectra, and amplitude 

characteristics. The stochastic limit cycle oscillator model is suggested as an 

alternative mechanism to chaos to model the aperiodic behaviour seen in the actual 

EEG. The popular Wilson-Cowan model of interacting excitatory and inhibitory 

neurons is also extended to a stochastic differential form. An enviable characteristic 

trait of a chaotic system is its sensitivity to initial conditions, suggested by Freeman to 

be beneficial in the brain, for example to enable small microscopic inputs from 

sensory cells to elicit large-scale macroscopic responses across sensory cortex regions. 

The final section in Chapter III illustrates, in the context of dynamical systems, how 

this phenomenon might be achieved by employing an alternative mechanism. A 

stochastic dynamical system at a bifurcation point is illustrated which can display 

qualitatively different behaviour for a minimal expenditure of energy. This is 

somewhat similar to a theorem by HOPPENSTEADT and IZHIKEVICH (1997), whose 

modelling work is based on the concept that only those neurons participate nontrivially 

in the brain processes whose dynamics are at a bifurcation point. The study of 

different kinds of bifurcations (e.g. cusp, pitchfork, saddle-node etc) under the 

influence of stochastic ‘blurring’ appears to warrant further research, in particular its 

application to biological systems where noise is ubiquitous.  

 

In Chapter IV, the focus is switched to analysing and modelling time series data. The 

goal here is to study the EEG time series using the tools of nonlinear time series 

analysis. In particular, we show that the stochastic limit cycle model of the EEG 

produces very similar dynamic characteristics to the actual EEG. The preliminary 

results of CASDAGLI (1991) are extended to qualitatively different EEG time series. 

For EEG originating from the eyes-closed relaxed state and deep sleep, little or no 
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evidence for nonlinearity is present in the data itself. In stark contrast, data obtained 

from a petit mal seizure appears quite nonlinear. These results were related to existing 

literature by employing the correlation dimension in a statistical framework involving 

phase-randomised surrogate data. The results of the correlation dimension test 

confirmed those of the Casdagli technique for each (qualitatively different) EEG data 

set tested. Next, the stochastic limit cycle model of the EEG is analysed and shows 

identical characteristics to actual (non-pathological) EEG data. This is particularly 

important, as the nonlinear mechanisms underlying the dynamics of the model do not 

manifest themselves in nonlinear time series analysis. Thus, while nonlinear dynamics 

almost certainly underlie the genesis of the actual EEG, nonlinear analysis techniques 

do not appear warranted by the data itself, with the possible exception of pathological 

data. A second order stochastic differential equation based on the Ornstein-Uhlenbeck 

equation is simulated and processed through a static nonlinearity. Locally linear 

(hence globally nonlinear) modelling is shown to provide the optimal predictor for the 

data. It is quite possible that the nonlinearity evident in pathological EEG data might 

be ascribed to this kind of non-dynamical nonlinearity (indeed this is backed up by 

HERNÁNDEZ et al (1996) who conclude that petit mal EEG data is best described by 

stochastic disturbed limit cycle behaviour). A further avenue of research here is to 

investigate under what conditions our stochastic limit cycle model exhibits increased 

nonlinearity in the data. Finally, we briefly review a recent technique by SIEGERT et al 

(1998) for determining the drift and diffusion terms for an underlying stochastic 

differential equation from the data itself. There are two developments of this technique 

that come to mind. Firstly, this technique suggests an intriguing way of parameterising 

a stochastic limit cycle oscillator similar to the one presented in Chapter III. Secondly, 

the parameter values themselves might well be used as features in pattern recognition 

applications. 

 

Chapter V is concerned with modelling evoked potentials on the basis of stimulus-

triggered phase reordering consisting of both phase synchronisation and phase 

resetting of individual oscillators. Stimulus-triggered synchronisation is shown to 

occur naturally in a network of biologically realistic model neurons. Next, a new 

macroscopic model for the generation of evoked potentials is presented based on the 

transient synchronisation of coupled oscillators representing neural populations. The 

model predicts latency under anaesthesia and generates a response that is shown to 
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approximate the analytic form of the Morlet wavelet – suggesting its application in the 

analysis of evoked potentials as an alternative to Fourier techniques (which employ 

sinusoidal basis functions). The chapter is concluded with a brief demonstration of 

stochastic synchronisation. PECORA and CARROLL (1990) recently observed that 

certain subsystems of nonlinear chaotic systems could be made to synchronise. We 

extend this observation to the case of stochastic limit cycle oscillators. Since both 

synchronisation and noise are ubiquitous in the brain, it appears that this phenomenon 

might well deserve further study. 

 

The penultimate chapter is concerned with practical applications. Based on the results 

of Chapter IV, one may conclude that the AutoRegressive (AR) model might be the 

most appropriate approach to characterising the EEG for pattern recognition stages in 

direct brain interface systems. We extend the AR method for feature extraction to the 

ARX case thus facilitating the reduction of data to a set of coefficients for paradigms 

involving ensemble averaged evoked or event-related potentials as exogenous inputs. 

An exploration of the technique is performed on a number of subjects with promising 

results. As a sidebar, an alternative communication mechanism is presented for use 

with locked-in patients (developed during the work of this thesis (BURKE et al, 2001)). 

An EEG based direct brain interface may not always be possible (e.g. if there is 

damage to the relevant cortical areas) and this technique, based on blink detection, can 

give comparable and sometimes better results. Chapter VI is concluded with a study of 

a direct brain interface based on fMRI data. Again the results are promising, and 

suggest a novel way of performing tighter integration with ‘traditional’ 

electrophysiological techniques. Indeed, combining the spatial advantages of fMRI 

with the temporal advantages of simultaneous EEG measurement may soon yield a 

new intriguing source of data for direct brain interfacing.  

 

Dynamical system modelling and analysis techniques have been shown to be powerful 

tools for studying electrical activity originating from the brain. In particular, this 

treatise suggests that macroscopic brain electrical activity is optimally modelled by the 

dynamics described by stochastic differential equations. This formulation, where the 

noise influences actually interact with the dynamics is substantially different to the 

usual definition of measurement noise and ought to lead to new ways of modelling 

other electrophysiological data.  
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APPENDIX A1 

ELECTRONIC CIRCUIT REALISATION OF A  

PRESCRIBED OSCILLATOR 
 

 

The method for prescribing oscillators presented in Chapter II may easily be 

implemented in hardware. Analogue electronic circuit realisations may be used as a 

function generator for multiple purposes such as testing, modelling, and education.  

Here we present an electronic version of the Cassinian Ovals limit cycle oscillator 

(Example 2.4).  

 

The prescribed oscillator system is given by 

 

 

 

 

where for the Cassinian Ovals we require 

 

 

and hence the partial derivatives are 

 

 

 

 

 

Figure A1.1 illustrates the analogue circuit diagram. Constants b, c, k were generated 

via zener reference diodes (1.2V). Quad opamp ICs (LM348N) and multiplier ICs 

(AD633) were employed. 

 

Figure A1.2 illustrates an oscilloscope image of the system where (0,0) forms a saddle 

node with two homoclinic trajectories (b = 1.0, c = -1.0, k = 1.0, λ = 1). The oscillator 

can be tuned (via k) to randomly oscillate between lobes in this configuration. 

(Although maintaining perfect randomness is not possible). 
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Figure A1.1: Analogue circuit diagram for the Cassinian Ovals oscillator 

Figure A1.2: Oscilloscope X-Y trace for the Cassinian 
Ovals oscillator with b = 1, c = -1, k = 1.0, λ = 1  


